Suppr超能文献

使用锥形束计算机断层扫描和微型计算机断层扫描扫描仪对临床前计算机断层扫描放射组学进行的比较分析。

A comparative analysis of preclinical computed tomography radiomics using cone-beam and micro-computed tomography scanners.

作者信息

Brown Kathryn H, Kerr Brianna N, Pettigrew Mihaela, Connor Kate, Miller Ian S, Shiels Liam, Connolly Colum, McGarry Conor, Byrne Annette T, Butterworth Karl T

机构信息

Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.

Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.

出版信息

Phys Imaging Radiat Oncol. 2024 Jul 23;31:100615. doi: 10.1016/j.phro.2024.100615. eCollection 2024 Jul.

Abstract

BACKGROUND AND PURPOSE

Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners.

MATERIALS AND METHODS

Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8.

RESULTS

First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15).

CONCLUSIONS

Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.

摘要

背景与目的

放射组学分析从医学图像中提取定量数据(特征)。这些特征可能反映生物学特性,并在精准医学中作为成像生物标志物。然而,放射组学输出结果缺乏交叉比较和验证,而这对于临床应用至关重要。在本研究中,我们比较了两种基于计算机断层扫描(CT)的临床前扫描仪的放射组学输出结果。

材料与方法

使用不同的临床前CT成像平台获取锥束CT(CBCT)和微CT扫描图像。使用体模在不同成像能量(40和60 kVp)和分割体积(44 - 238毫米)下评估每种扫描仪上放射组学特征的可重复性。使用回顾性小鼠扫描来比较不同组织密度(肺、心脏、骨骼)、扫描仪以及体素大小归一化后的特征可靠性。可靠特征的组内相关系数(ICC)> 0.8。

结果

在不同体积下,一阶特征和灰度共生矩阵(GLCM)特征在两种扫描仪上最为可靠。组织密度与特征可靠性呈负相关,肺中的特征数量最多(CBCT = 580,微CT = 734),骨骼中的特征数量最少(CBCT = 110,微CT = 560)。当体素大小归一化后,肺和心脏组织的可比特征增加。我们已经确定了小鼠肺(133个)、心脏(35个)和骨骼(15个)的组织特异性临床前放射组学特征。

结论

临床前CBCT和微CT扫描可用于放射组学分析,以支持有意义的放射组学特征的开发。本研究证明了标准化的重要性,并强调了多中心研究的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a516/11328005/809706139eac/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验