Suppr超能文献

电液软机器人的鲁棒控制

Robust control of electrohydraulic soft robots.

作者信息

Volchko Angella, Mitchell Shane K, Scripps Tyler G, Turin Zoe, Humbert J Sean

机构信息

Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States.

Artimus Robotics Inc., Boulder, CO, United States.

出版信息

Front Robot AI. 2024 Aug 2;11:1333837. doi: 10.3389/frobt.2024.1333837. eCollection 2024.

Abstract

This article introduces a model-based robust control framework for electrohydraulic soft robots. The methods presented herein exploit linear system control theory as it applies to a nonlinear soft robotic system. We employ dynamic mode decomposition with control (DMDc) to create appropriate linear models from real-world measurements. We build on the theory by developing linear models in various operational regions of the system to result in a collection of linear plants used in uncertainty analysis. To complement the uncertainty analyses, we utilize ("H Infinity") synthesis techniques to determine an optimal controller to meet performance requirements for the nominal plant. Following this methodology, we demonstrate robust control over a multi-input multi-output (MIMO) hydraulically amplified self-healing electrostatic (HASEL)-actuated system. The simplifications in the proposed framework help address the inherent uncertainties and complexities of compliant robots, providing a flexible approach for real-time control of soft robotic systems in real-world applications.

摘要

本文介绍了一种基于模型的电液软机器人鲁棒控制框架。本文提出的方法利用了适用于非线性软机器人系统的线性系统控制理论。我们采用带控制的动态模式分解(DMDc)从实际测量中创建合适的线性模型。我们基于该理论,在系统的各个运行区域开发线性模型,以得到用于不确定性分析的一组线性装置。为补充不确定性分析,我们利用“H无穷”综合技术来确定一个最优控制器,以满足标称装置的性能要求。按照这种方法,我们展示了对多输入多输出(MIMO)液压放大自修复静电(HASEL)驱动系统的鲁棒控制。所提出框架中的简化有助于解决柔顺机器人固有的不确定性和复杂性,为软机器人系统在实际应用中的实时控制提供了一种灵活的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验