Yoder Zachary, Kellaris Nicholas, Chase-Markopoulou Christina, Ricken Devon, Mitchell Shane K, Emmett Madison B, Weir Richard F Ff, Segil Jacob, Keplinger Christoph
Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States.
Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, United States.
Front Robot AI. 2020 Nov 27;7:586216. doi: 10.3389/frobt.2020.586216. eCollection 2020.
Current designs of powered prosthetic limbs are limited by the nearly exclusive use of DC motor technology. Soft actuators promise new design freedom to create prosthetic limbs which more closely mimic intact neuromuscular systems and improve the capabilities of prosthetic users. This work evaluates the performance of a hydraulically amplified self-healing electrostatic (HASEL) soft actuator for use in a prosthetic hand. We compare a linearly-contracting HASEL actuator, termed a Peano-HASEL, to an existing actuator (DC motor) when driving a prosthetic finger like those utilized in multi-functional prosthetic hands. A kinematic model of the prosthetic finger is developed and validated, and is used to customize a prosthetic finger that is tuned to complement the force-strain characteristics of the Peano-HASEL actuators. An analytical model is used to inform the design of an improved Peano-HASEL actuator with the goal of increasing the fingertip pinch force of the prosthetic finger. When compared to a weight-matched DC motor actuator, the Peano-HASEL and custom finger is 10.6 times faster, has 11.1 times higher bandwidth, and consumes 8.7 times less electrical energy to grasp. It reaches 91% of the maximum range of motion of the original finger. However, the DC motor actuator produces 10 times the fingertip force at a relevant grip position. In this body of work, we present ways to further increase the force output of the Peano-HASEL driven prosthetic finger system, and discuss the significance of the unique properties of Peano-HASELs when applied to the field of upper-limb prosthetic design. This approach toward clinically-relevant actuator performance paired with a substantially different form-factor compared to DC motors presents new opportunities to advance the field of prosthetic limb design.
当前动力假肢的设计几乎完全依赖直流电机技术,因而受到限制。软驱动器有望带来新的设计自由度,从而制造出更能紧密模仿完整神经肌肉系统并提升假肢使用者能力的假肢。这项工作评估了一种用于假手的液压放大自修复静电(HASEL)软驱动器的性能。在驱动多功能假手中使用的那种假手指时,我们将一种线性收缩的HASEL驱动器(称为皮亚诺 - HASEL)与现有的驱动器(直流电机)进行了比较。开发并验证了假手指的运动学模型,并用于定制一个经过调整以补充皮亚诺 - HASEL驱动器力 - 应变特性的假手指。使用一个分析模型来指导改进型皮亚诺 - HASEL驱动器的设计,目标是增加假手指的指尖捏力。与重量匹配的直流电机驱动器相比,皮亚诺 - HASEL和定制手指的速度快10.6倍,带宽高11.1倍,抓握时消耗的电能少8.7倍。它达到了原始手指最大运动范围的91%。然而,在相关握持位置,直流电机驱动器产生的指尖力是其10倍。在这项工作中,我们提出了进一步增加皮亚诺 - HASEL驱动的假手指系统力输出量的方法,并讨论了皮亚诺 - HASEL独特特性在应用于上肢假肢设计领域时的重要性。这种针对临床相关驱动器性能的方法,与直流电机相比,外形因素有很大不同,为推进假肢设计领域带来了新机遇。