Zhu Kuang, Zhang Hao, Zhu Liyan, Tian Tian, Tang Haibo, Lu Xingchen, He Bei, Wu Fanglin, Tang Haolin
National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Nano Lett. 2024 Aug 28;24(34):10656-10663. doi: 10.1021/acs.nanolett.4c03112. Epub 2024 Aug 19.
Efficient electrochemical energy conversion technologies, such as fuel cells and water electrolyzers, require high current densities to lower the capital cost for large-scale commercialization but are often limited by mass transport. In this study, we demonstrated exceptional electrochemical performances in proton electrolyte membrane water electrolyzers (PEMWEs) creating micropatterned pore channels in the porous transport layer (MPC PTL) using a picosecond laser. This approach yielded an impressive performance of 1.82 V @ 2 A·cm, which is better than commercial PTL of 1.90 V @ 2 A cm. The significant performance enhancement is attributed to the micropatterned porous channel structure, facilitating the efficient expulsion of oxygen bubbles and input of reactant water. This work provides valuable insights for the design of PTL responsible for biphasic transport in electrochemical energy conversion technologies.
高效的电化学能量转换技术,如燃料电池和水电解槽,需要高电流密度来降低大规模商业化的资本成本,但往往受到传质的限制。在本研究中,我们展示了质子电解质膜水电解槽(PEMWEs)中使用皮秒激光在多孔传输层(MPC PTL)中创建微图案化孔隙通道时的卓越电化学性能。这种方法在2 A·cm²时产生了令人印象深刻的1.82 V性能,优于商业PTL在2 A cm²时的1.90 V。显著的性能提升归因于微图案化的多孔通道结构,有利于氧气泡的有效排出和反应水的输入。这项工作为电化学能量转换技术中负责双相传输的PTL设计提供了有价值的见解。