Suppr超能文献

CRISPR-Cas抑制质粒转移并使细菌对粪便中抗生素耐药性的获得产生免疫。

CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure.

作者信息

Upreti Chahat, Kumar Pranav, Durso Lisa M, Palmer Kelli L

机构信息

Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA.

U.S. Department of Agriculture, Agricultural Research Service, Agroecosystem Management Unit, Lincoln, Nebraska, USA.

出版信息

Appl Environ Microbiol. 2024 Sep 18;90(9):e0087624. doi: 10.1128/aem.00876-24. Epub 2024 Aug 19.

Abstract

The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system clustered regularly interspaced short palindromic repeats (CRISPR)-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural strains and its antiplasmid efficacy in an agricultural niche: manure. Analyzing 1,986 genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.IMPORTANCEAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas-a bacterial defense system-to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium, . We show that CRISPR-Cas is both prevalent and functional in manure and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas-based strategies for control of antibiotic resistance in agricultural settings.

摘要

抗生素抗性基因在细菌间的水平转移是一个紧迫的全球问题。细菌防御系统成簇规律间隔短回文重复序列(CRISPR)-Cas可作为抗生素抗性质粒传播的屏障,基于CRISPR-Cas的抗菌剂可有效选择性清除抗生素抗性细菌。虽然大量监测工作在临床环境中监测抗生素抗性细菌的传播,但该问题一个主要且常被忽视的方面是农业领域的抗性出现。农场动物通常用抗生素治疗,农业领域的抗生素抗性正在上升。然而,尚未在这种情况下研究CRISPR-Cas的功效。在此,我们评估了农业菌株中CRISPR-Cas的流行情况及其在农业生态位(粪便)中的抗质粒功效。通过分析来自人类和动物宿主的1986个基因组,我们表明临床菌株和农业菌株中CRISPR-Cas亚型的流行情况相似。使用质粒接合试验,我们发现CRISPR-Cas是粪便中抗性质粒转移的重要屏障。最后,我们使用基于CRISPR的抗菌方法治愈了对红霉素具有抗性的菌株,但这受到CRISPR抗菌剂在粪便中递送效率的限制。然而,使细菌免疫以防止在粪便中获得抗性基因非常有效。总之,我们的结果表明CRISPR-Cas在农业环境中普遍存在且有效,并且有潜力用于清除抗生素抗性菌群。我们的工作对于在日益相关的农业环境中应对抗生素抗性具有广泛意义,符合“同一健康”方法。重要性抗生素抗性是人类和兽医学中日益严重的全球健康危机。先前的研究表明,基于CRISPR-Cas(一种细菌防御系统)的技术在应对抗生素抗性方面是有效的。在此我们测试CRISPR-Cas在农业生态位中是否存在且有效,特别是在普遍存在的细菌中。我们表明CRISPR-Cas在粪便中既普遍存在又有功能,并且有潜力用于特异性杀死携带抗生素抗性基因的细菌。这项研究证明了基于CRISPR-Cas的策略在控制农业环境中抗生素抗性方面的实用性。

相似文献

10
Multidrug-resistant enterococci lack CRISPR-cas.多重耐药肠球菌缺乏 CRISPR-cas。
mBio. 2010 Oct 12;1(4):e00227-10. doi: 10.1128/mBio.00227-10.

引用本文的文献

本文引用的文献

9
The next generation of CRISPR-Cas technologies and applications.下一代 CRISPR-Cas 技术与应用
Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. doi: 10.1038/s41580-019-0131-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验