Tian Tian, Zhang Xuan, Zhang Fei, Huang Xinghe, Li Minglin, Quan Ziwei, Wang Wenyue, Lei Jiawei, Wang Yuting, Liu Ying, Wang Jia-He
Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, China.
Front Microbiol. 2024 Nov 15;15:1510139. doi: 10.3389/fmicb.2024.1510139. eCollection 2024.
The integration of artificial intelligence (AI) in pathogenic microbiology has accelerated research and innovation. This study aims to explore the evolution and trends of AI applications in this domain, providing insights into how AI is transforming research and practice in pathogenic microbiology.
We employed bibliometric analysis and topic modeling to examine 27,420 publications from the Web of Science Core Collection, covering the period from 2010 to 2024. These methods enabled us to identify key trends, research areas, and the geographical distribution of research efforts.
Since 2016, there has been an exponential increase in AI-related publications, with significant contributions from China and the USA. Our analysis identified eight major AI application areas: pathogen detection, antibiotic resistance prediction, transmission modeling, genomic analysis, therapeutic optimization, ecological profiling, vaccine development, and data management systems. Notably, we found significant lexical overlaps between these areas, especially between drug resistance and vaccine development, suggesting an interconnected research landscape.
AI is increasingly moving from laboratory research to clinical applications, enhancing hospital operations and public health strategies. It plays a vital role in optimizing pathogen detection, improving diagnostic speed, treatment efficacy, and disease control, particularly through advancements in rapid antibiotic susceptibility testing and COVID-19 vaccine development. This study highlights the current status, progress, and challenges of AI in pathogenic microbiology, guiding future research directions, resource allocation, and policy-making.
人工智能(AI)在病原微生物学中的整合加速了研究与创新。本研究旨在探讨人工智能在该领域的应用演变及趋势,深入了解人工智能如何改变病原微生物学的研究与实践。
我们采用文献计量分析和主题建模方法,对来自科学引文索引核心合集的27420篇出版物进行研究,时间跨度为2010年至2024年。这些方法使我们能够确定关键趋势、研究领域以及研究工作的地理分布。
自2016年以来,与人工智能相关的出版物呈指数级增长,中国和美国贡献显著。我们的分析确定了八个主要的人工智能应用领域:病原体检测、抗生素耐药性预测、传播建模、基因组分析、治疗优化、生态剖析、疫苗开发和数据管理系统。值得注意的是,我们发现这些领域之间存在显著的词汇重叠,尤其是耐药性和疫苗开发之间,这表明研究领域相互关联。
人工智能正越来越多地从实验室研究转向临床应用,改善医院运营和公共卫生策略。它在优化病原体检测、提高诊断速度、治疗效果和疾病控制方面发挥着至关重要的作用,特别是通过快速抗生素敏感性测试和新冠疫苗开发的进展。本研究突出了人工智能在病原微生物学中的现状、进展和挑战,为未来的研究方向、资源分配和政策制定提供指导。