Suppr超能文献

人工智能在心血管医学中的应用:临床应用。

Artificial intelligence in cardiovascular medicine: clinical applications.

机构信息

Royal Brompton and Harefield Hospitals, London, UK.

National Heart and Lung Institute, Imperial College London, UK.

出版信息

Eur Heart J. 2024 Oct 21;45(40):4291-4304. doi: 10.1093/eurheartj/ehae465.

Abstract

Clinical medicine requires the integration of various forms of patient data including demographics, symptom characteristics, electrocardiogram findings, laboratory values, biomarker levels, and imaging studies. Decision-making on the optimal management should be based on a high probability that the envisaged treatment is appropriate, provides benefit, and bears no or little potential harm. To that end, personalized risk-benefit considerations should guide the management of individual patients to achieve optimal results. These basic clinical tasks have become more and more challenging with the massively growing data now available; artificial intelligence and machine learning (AI/ML) can provide assistance for clinicians by obtaining and comprehensively preparing the history of patients, analysing face and voice and other clinical features, by integrating laboratory results, biomarkers, and imaging. Furthermore, AI/ML can provide a comprehensive risk assessment as a basis of optimal acute and chronic care. The clinical usefulness of AI/ML algorithms should be carefully assessed, validated with confirmation datasets before clinical use, and repeatedly re-evaluated as patient phenotypes change. This review provides an overview of the current data revolution that has changed and will continue to change the face of clinical medicine radically, if properly used, to the benefit of physicians and patients alike.

摘要

临床医学需要整合各种形式的患者数据,包括人口统计学信息、症状特征、心电图结果、实验室值、生物标志物水平和影像学研究。最佳管理决策应该基于预期治疗方案合理、有效且潜在危害小或无的高度可能性。为此,个性化的风险效益考虑因素应指导个体患者的管理,以实现最佳结果。随着现在可用数据的大量增长,这些基本的临床任务变得越来越具有挑战性;人工智能和机器学习 (AI/ML) 可以通过获取和全面准备患者的病史、分析面部和语音等临床特征,通过整合实验室结果、生物标志物和影像学,为临床医生提供帮助。此外,AI/ML 可以提供全面的风险评估,作为优化急性和慢性护理的基础。应仔细评估 AI/ML 算法的临床实用性,在临床使用前使用确认数据集进行验证,并随着患者表型的变化反复重新评估。这篇综述概述了当前的数据革命,如果正确使用,它将彻底改变临床医学的面貌,并使医生和患者受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验