Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
Cell Mol Life Sci. 2024 Aug 19;81(1):354. doi: 10.1007/s00018-024-05357-2.
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
成熟神经元具有稳定的树突结构,这对于神经系统正常运作至关重要。成熟神经元仍具有结构可塑性,这是支持记忆形成等适应过程所必需的。目前尚不清楚哪些分子和细胞过程控制着树突结构可塑性和稳定性之间的微妙平衡。由于萎缩或适应不良的可塑性导致最佳树突结构的保存失败,会导致异常连接,并与各种神经疾病有关。血管内皮生长因子 D (VEGFD) 对于维持成熟树突至关重要。在这里,我们描述了 VEGFD 如何影响神经元细胞骨架,并证明 VEGFD 通过影响肌动蛋白皮层和减少微管动力学来发挥稳定树突的作用。此外,我们发现,在突触活动诱导的结构可塑性过程中,VEGFD 下调。我们的研究结果表明,VEGFD 通过其同源受体 VEGFR3 发挥作用,通过负向调节培养的海马神经元和成年小鼠海马体中的树突生长来对抗结构变化,从而对记忆形成产生影响。磷酸蛋白质组学筛选鉴定出几种受 VEGFD 调节的细胞骨架调节蛋白。在肌动蛋白皮层相关蛋白中,我们发现 VEGFD 通过激活纹状体丰富的蛋白酪氨酸磷酸酶 (STEP) 诱导 ezrin 酪氨酸 478 的去磷酸化。体外和体内表达磷酸缺陷型 ezrin 突变体可损害树突的活性触发的结构可塑性。因此,VEGFD 通过充当结构重塑的分子制动器来控制树突稳定性和可塑性之间的平衡。