Suppr超能文献

用于脑部磁共振成像的SISMIK:k空间中基于深度学习的运动估计和基于模型的运动校正

SISMIK for Brain MRI: Deep-Learning-Based Motion Estimation and Model-Based Motion Correction in k-Space.

作者信息

Dabrowski Oscar, Falcone Jean-Luc, Klauser Antoine, Songeon Julien, Kocher Michel, Chopard Bastien, Lazeyras Francois, Courvoisier Sebastien

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):396-408. doi: 10.1109/TMI.2024.3446450. Epub 2025 Jan 2.

Abstract

MRI, a widespread non-invasive medical imaging modality, is highly sensitive to patient motion. Despite many attempts over the years, motion correction remains a difficult problem and there is no general method applicable to all situations. We propose a retrospective method for motion estimation and correction to tackle the problem of in-plane rigid-body motion, apt for classical 2D Spin-Echo scans of the brain, which are regularly used in clinical practice. Due to the sequential acquisition of k-space, motion artifacts are well localized. The method leverages the power of deep neural networks to estimate motion parameters in k-space and uses a model-based approach to restore degraded images to avoid "hallucinations". Notable advantages are its ability to estimate motion occurring in high spatial frequencies without the need of a motion-free reference. The proposed method operates on the whole k-space dynamic range and is moderately affected by the lower SNR of higher harmonics. As a proof of concept, we provide models trained using supervised learning on 600k motion simulations based on motion-free scans of 43 different subjects. Generalization performance was tested with simulations as well as in-vivo. Qualitative and quantitative evaluations are presented for motion parameter estimations and image reconstruction. Experimental results show that our approach is able to obtain good generalization performance on simulated data and in-vivo acquisitions. We provide a Python implementation at https://gitlab.unige.ch/Oscar.Dabrowski/sismik_mri/.

摘要

磁共振成像(MRI)是一种广泛应用的非侵入性医学成像方式,对患者的运动非常敏感。尽管多年来人们进行了许多尝试,但运动校正仍然是一个难题,并且没有适用于所有情况的通用方法。我们提出了一种用于运动估计和校正的回顾性方法,以解决平面内刚体运动问题,适用于临床上常用的经典二维脑部自旋回波扫描。由于k空间的顺序采集,运动伪影定位良好。该方法利用深度神经网络的能力来估计k空间中的运动参数,并使用基于模型的方法来恢复退化图像,以避免“幻觉”。其显著优点是能够估计在高空间频率下发生的运动,而无需无运动的参考。所提出的方法在整个k空间动态范围内运行,并且受较高谐波较低信噪比的影响较小。作为概念验证,我们提供了基于43个不同受试者的无运动扫描在600k运动模拟上使用监督学习训练的模型。通过模拟以及体内实验测试了泛化性能。给出了运动参数估计和图像重建的定性和定量评估。实验结果表明,我们的方法能够在模拟数据和体内采集上获得良好的泛化性能。我们在https://gitlab.unige.ch/Oscar.Dabrowski/sismik_mri/上提供了Python实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验