Suppr超能文献

在低、中、高剪切率下,流动衍生的机械线索对血小板聚集物的生长和形态的影响。

The effect of flow-derived mechanical cues on the growth and morphology of platelet aggregates under low, medium, and high shear rates.

机构信息

Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands.

Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.

出版信息

Comput Biol Med. 2024 Sep;180:109010. doi: 10.1016/j.compbiomed.2024.109010. Epub 2024 Aug 18.

Abstract

Platelet aggregation is a dynamic process that can obstruct blood flow, leading to cardiovascular diseases. While many studies have demonstrated clear connections between shear rate and platelet aggregation, the impact of flow-derived mechanical signals on this process is not fully understood. The objective of this work is to investigate the role of flow conditions on platelet aggregation dynamics, including effects on growth, shape, density composition, and their potential correlation with binding processes that are characterised by longer (e.g., via αIIbβ3 integrin) and shorter (e.g., via VWF) initial binding times. In vitro blood perfusion experiments were conducted at wall shear rates of 800, 1600 and 4000 s. Detailed analysis of two modalities of experimental images was performed to offer insights into the morphology of platelet aggregates. A consistent structural pattern was observed across all samples: a high-density core enveloped by a low-density outer shell. An image-based 3D computational blood flow model was subsequently employed to study the local flow conditions, including binding availability time and flow-derived mechanical signals via shear rate and rate of elongation. The results show substantial dependence of the aggregation dynamics on these flow parameters. We found that the different binding mechanisms that prefer different flow regimes do not have a monotonic cross-over in efficiency as the flow increases. There is a significant dip in the cumulative aggregation potential in-between the preferred regimes. The results suggest that treatments targeting the biomechanical pathways could benefit from creating conditions that exploit these low-efficiency zones of aggregation.

摘要

血小板聚集是一个动态过程,可能会阻塞血流,导致心血管疾病。虽然许多研究已经表明切变率与血小板聚集之间存在明显的联系,但流动产生的机械信号对这一过程的影响尚未完全了解。本工作的目的是研究流动条件对血小板聚集动力学的作用,包括对生长、形状、密度组成的影响,以及它们与结合过程的潜在相关性,结合过程的特征是初始结合时间较长(例如通过αIIbβ3 整合素)和较短(例如通过 VWF)。在 800、1600 和 4000 s 的壁面切变率下进行了体外血液灌注实验。对两种实验图像模式进行了详细分析,以深入了解血小板聚集的形态。在所有样本中观察到一致的结构模式:高密度核心被低密度外壳包围。随后使用基于图像的 3D 计算血流模型研究了局部流动条件,包括通过切变率和伸长率获得的结合可用性时间和流动产生的机械信号。结果表明,聚集动力学对这些流动参数有很大的依赖性。我们发现,不同的结合机制优先不同的流动区域,其效率并没有随着流动的增加而单调交叉。在首选区域之间存在聚集潜力的显著下降。结果表明,针对生物力学途径的治疗方法可能受益于创造利用这些低效率聚集区域的条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验