School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China.
School of Big Data, Zhuhai College of Science and Technology, Zhuhai, 519041, China.
Sci Rep. 2024 Sep 6;14(1):20828. doi: 10.1038/s41598-024-71700-z.
The multi-lead electrocardiogram (ECG) is widely utilized in clinical diagnosis and monitoring of cardiac conditions. The advancement of deep learning has led to the emergence of automated multi-lead ECG diagnostic networks, which have become essential in the fields of biomedical engineering and clinical cardiac disease diagnosis. Intelligent ECG diagnosis techniques encompass Recurrent Neural Networks (RNN), Transformers, and Convolutional Neural Networks (CNN). While CNN is capable of extracting local spatial information from images, it lacks the ability to learn global spatial features and temporal memory features. Conversely, RNN relies on time and can retain significant sequential features. However, they are not proficient in extracting lengthy dependencies of sequence data in practical scenarios. The self-attention mechanism in the Transformer model has the capability of global feature extraction, but it does not adequately prioritize local features and cannot extract spatial and channel features. This paper proposes STFAC-ECGNet, a model that incorporates CAMV-RNN block, CBMV-CNN block, and TSEF block to enhance the performance of the model by integrating the strengths of CNN, RNN, and Transformer. The CAMV-RNN block incorporates a coordinated adaptive simplified self-attention module that adaptively carries out global sequence feature retention and enhances spatial-temporal information. The CBMV-CNN block integrates spatial and channel attentional mechanism modules in a skip connection, enabling the fusion of spatial and channel information. The TSEF block implements enhanced multi-scale fusion of image spatial and sequence temporal features. In this study, comprehensive experiments were conducted using the PTB-XL large publicly available ECG dataset and the China Physiological Signal Challenge 2018 (CPSC2018) database. The results indicate that STFAC-ECGNet surpasses other cutting-edge techniques in multiple tasks, showcasing robustness and generalization.
多导联心电图(ECG)在临床诊断和心脏状况监测中得到了广泛应用。深度学习的进步使得自动化多导联 ECG 诊断网络应运而生,这些网络在生物医学工程和临床心脏疾病诊断领域变得至关重要。智能 ECG 诊断技术包括循环神经网络(RNN)、Transformer 和卷积神经网络(CNN)。虽然 CNN 能够从图像中提取局部空间信息,但它缺乏学习全局空间特征和时间记忆特征的能力。相反,RNN 依赖于时间,可以保留重要的序列特征。然而,它们在实际场景中并不擅长提取序列数据的长依赖性。Transformer 模型中的自注意力机制具有全局特征提取的能力,但它不能很好地优先考虑局部特征,也不能提取空间和通道特征。本文提出了 STFAC-ECGNet,该模型结合了 CAMV-RNN 块、CBMV-CNN 块和 TSEF 块,通过整合 CNN、RNN 和 Transformer 的优势来提高模型的性能。CAMV-RNN 块引入了协调自适应简化自注意力模块,该模块自适应地进行全局序列特征保留,并增强时空信息。CBMV-CNN 块在跳连中集成了空间和通道注意力机制模块,实现了空间和通道信息的融合。TSEF 块实现了图像空间和序列时间特征的增强多尺度融合。在这项研究中,我们使用了公开的大型 PTB-XL ECG 数据集和 China Physiological Signal Challenge 2018(CPSC2018)数据库进行了全面的实验。结果表明,STFAC-ECGNet 在多个任务中超越了其他前沿技术,具有鲁棒性和泛化能力。