Chi Yulin, Huang Jieshan, Zhang Zhanchuan, Mao Jun, Zhou Zinan, Chen Xiaojiong, Zhai Chonghao, Bao Jueming, Dai Tianxiang, Yuan Huihong, Zhang Ming, Dai Daoxin, Tang Bo, Yang Yan, Li Zhihua, Ding Yunhong, Oxenløwe Leif K, Thompson Mark G, O'Brien Jeremy L, Li Yan, Gong Qihuang, Wang Jianwei
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China.
Beijing Academy of Quantum Information Sciences, 100193, Beijing, China.
Nat Commun. 2022 Mar 4;13(1):1166. doi: 10.1038/s41467-022-28767-x.
Controlling and programming quantum devices to process quantum information by the unit of quantum dit, i.e., qudit, provides the possibilities for noise-resilient quantum communications, delicate quantum molecular simulations, and efficient quantum computations, showing great potential to enhance the capabilities of qubit-based quantum technologies. Here, we report a programmable qudit-based quantum processor in silicon-photonic integrated circuits and demonstrate its enhancement of quantum computational parallelism. The processor monolithically integrates all the key functionalities and capabilities of initialisation, manipulation, and measurement of the two quantum quart (ququart) states and multi-value quantum-controlled logic gates with high-level fidelities. By reprogramming the configuration of the processor, we implemented the most basic quantum Fourier transform algorithms, all in quaternary, to benchmark the enhancement of quantum parallelism using qudits, which include generalised Deutsch-Jozsa and Bernstein-Vazirani algorithms, quaternary phase estimation and fast factorization algorithms. The monolithic integration and high programmability have allowed the implementations of more than one million high-fidelity preparations, operations and projections of qudit states in the processor. Our work shows an integrated photonic quantum technology for qudit-based quantum computing with enhanced capacity, accuracy, and efficiency, which could lead to the acceleration of building a large-scale quantum computer.
通过量子数位(即量子元)来控制和编程量子设备以处理量子信息,为抗噪声量子通信、精细的量子分子模拟和高效量子计算提供了可能,显示出增强基于量子比特的量子技术能力的巨大潜力。在此,我们报告了一种基于可编程量子元的硅光子集成电路量子处理器,并展示了其对量子计算并行性的增强。该处理器将两个量子四元(ququart)态的初始化、操纵和测量以及多值量子控制逻辑门的所有关键功能和能力进行了单片集成,且具有高保真度。通过重新编程处理器的配置,我们实现了最基本的全四元量子傅里叶变换算法,以使用量子元来基准测试量子并行性的增强,其中包括广义德乌奇 - 约扎算法和伯恩斯坦 - 瓦齐拉尼算法、四元相位估计和快速因式分解算法。单片集成和高可编程性使得处理器能够实现超过一百万个量子元态的高保真制备、操作和投影。我们的工作展示了一种用于基于量子元的量子计算的集成光子量子技术,具有增强的容量、准确性和效率,这可能会加速大规模量子计算机的构建。