Suppr超能文献

一种基于物联网的生命体征新型健康监测系统。

A novel health monitoring system for vital signs using IoT.

机构信息

Guangzhou Academy of Fine Arts, Guangzhou, 510006, Guangdong, China.

出版信息

Sci Rep. 2024 Aug 19;14(1):19189. doi: 10.1038/s41598-024-69257-y.

Abstract

The current research looked at how to use the Internet of Things (IoT) to create a vital sign health monitoring system. Eight indications are employed to get critical patient information. Therefore, the number of nodes of the IoT embedded in the human body is 8, which have been worked on in different places of the body. Among the 8 nodes, node number 1 is located in the center of the grid (the center of the human body). The number of rounds is 9000 and the nodes are adopted with the initial energy of the nodes of 0.5 J and the radio range of 10 m. MATLAB software was used to simulate the WBAN network, which consists of IoT sensors embedded in the human body. The eight-item health assessment tool takes the following into account: pulse rate, blood pressure (mm Hg), serum cholesterol (mg/dl), temperature (°C), exercise-induced angina, and exercise-induced ST-wave depression, major blood vessels are counted using a medical procedure called endoscopy that involves examining the alveoli, which are small air sacs in the lungs where gas exchange occurs. We compared the number of major vessels at rest with the maximal heart rate during activity. The sensors were responsible for sending this data to the health center (base station). The data collected from the installation of these 8 sensors on 303 patients were collected and evaluated by machine learning method using MLP neural network method. Finally, it can be claimed that the present study has provided an automated method of determining the health of people using the IoT in a way that provides a state of health with an accuracy of over 99% and can be used in medical centers.

摘要

当前的研究着眼于如何利用物联网 (IoT) 创建生命体征健康监测系统。采用 8 项指标获取关键患者信息。因此,物联网嵌入人体的节点数量为 8 个,这些节点分布在人体的不同部位。在这 8 个节点中,节点 1 位于网格中心(人体中心)。节点数为 9000,节点采用初始能量为 0.5 J 的节点,无线电范围为 10 m。使用 MATLAB 软件对物联网传感器嵌入人体的 WBAN 网络进行了仿真。八项健康评估工具考虑了以下因素:脉搏率、血压(mmHg)、血清胆固醇(mg/dl)、体温(°C)、运动引起的心绞痛和运动引起的 ST 段压低、主要血管使用称为内窥镜的医疗程序进行计数,该程序涉及检查肺泡,肺泡是肺部进行气体交换的小气囊。我们比较了休息时主要血管的数量与活动时的最大心率。传感器负责将此数据发送到健康中心(基站)。从 303 名患者身上安装的这 8 个传感器收集的数据,使用 MLP 神经网络方法的机器学习方法进行了收集和评估。最后,可以说本研究已经提供了一种使用物联网自动确定人体健康的方法,该方法可以提供 99%以上的健康状态,并可用于医疗中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/143e/11333487/9343bcbd6ebb/41598_2024_69257_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验