Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
J Nanobiotechnology. 2024 Aug 20;22(1):494. doi: 10.1186/s12951-024-02736-6.
Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies.
Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1.
Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.
核盘菌是一种具有高度破坏性的植物病原菌,对广泛的农作物构成了严重威胁。目前遗传操作技术的限制阻碍了对其致病机制的全面理解以及有效控制策略的发展。
本文介绍了一种针对核盘菌的高效遗传转化系统,该系统利用了梭形纳米颗粒,这些纳米颗粒是由 FeCl 和 2,6-二氨基嘧啶(DAP)合成的。这些纳米颗粒具有平均长径为 59.00nm 和带正电荷的表面,可促进外源 DNA 直接递送至核盘菌的菌丝细胞,并实现稳定表达的成功整合。值得注意的是,该系统绕过了真菌原生质体制备和繁琐的回收过程,大大简化了转化过程。此外,我们成功地利用该系统生成了沉默编码 oxaloacetate acetylhydrolase 的基因 Ss-oah1 的核盘菌菌株。
我们的研究结果表明,纳米颗粒介导的递送可作为核盘菌遗传修饰的快速可靠工具。鉴于其简单性和高效率,它有可能极大地推动丝状真菌的遗传研究,为阐明致病性的复杂性和开发创新的疾病管理策略提供新途径。