文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用中心复合设计优化超声辅助法合成高稳定性生物相容的氧化铋包覆氧化铁纳米粒子。

Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design.

机构信息

Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

出版信息

Ultrason Sonochem. 2023 May;95:106371. doi: 10.1016/j.ultsonch.2023.106371. Epub 2023 Mar 15.


DOI:10.1016/j.ultsonch.2023.106371
PMID:36934677
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10034128/
Abstract

The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (FeO NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (FeO) NPs via incorporating their surface through coating with Bi NPs, creating unique FeO@Bi composite NPs. The FeO@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized FeONPs following modification to FeO@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of FeO@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that FeONPs and FeO@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of FeO@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible FeO@Bi NPs with multifunctional potential for various biomedical applications.

摘要

将其他官能团(如铋纳米粒子(Bi NPs))掺入磁铁矿纳米粒子(FeO NPs)中对于其在生物医学应用中的性质修饰、稳定和多功能化至关重要。在这项工作中,通过在其表面涂覆 Bi NPs,超声快速修饰了氧化铁(FeO) NPs,形成了独特的 FeO@Bi 复合材料 NPs。使用超声探头和响应面法(RSM)合成并统计优化了 FeO@Bi 纳米复合材料。使用中心复合面设计(CCD)研究了制备条件对纳米复合材料稳定性、尺寸和尺寸分布的影响。基于数值期望函数,确定了影响响应的优化制备参数分别为 Bi 浓度、硼氢化钠(SBH)浓度和超声时间的 40ml、5ml 和 12min。结果发现,超声时间是决定响应的最主要因素。在最高期望解决方案(100%)下,预测的zeta 电位、水动力尺寸和多分散指数(PDI)值分别为-45mV、122nm 和 0.257,而在最佳制备条件下的实验值分别为-47.1mV、125nm 和 0.281。动态光散射(DLS)结果表明,超声对 FeO NPs 的修饰有效地稳定和功能化了 FeO@Bi NPs,将 zeta 电位值从-33.5 提高到-47.1mV,但将水动力尺寸从 98nm 增加到 125nm。能量色散光谱(EDX)验证了元素组成,傅里叶变换红外光谱(FTIR)证实了 Sumac(Rhus coriaria)化合物存在于纳米复合材料的组成中。使用 Sumac 可食用植物的提取溶液提高了 FeO@Bi NPs 的稳定性和生物相容性。其他物理化学结果表明,FeO NPs 和 FeO@Bi NPs 是结晶的、半球形的和单分散的,平均粒径分别为 11.7nm 和 19.5nm,其饱和磁化强度(Ms)值分别为 132.33emu/g 和 92.192emu/g。FeO@Bi NPs 对 HEK-293 细胞的体外细胞毒性呈剂量和时间依赖性。根据我们的研究结果,超声化学方法有效地制备了(并且 RSM 准确地优化了)具有多功能潜力的极其稳定、均匀和生物相容的 FeO@Bi NPs,可用于各种生物医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/2993f51d7055/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/bdf92e93370a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/23932b0ee8df/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/f5012868a3a3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/d02477eddf0d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/a62df92dca4f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/845802234c2e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/9240a7671707/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/7f680e6f19e0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/2993f51d7055/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/bdf92e93370a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/23932b0ee8df/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/f5012868a3a3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/d02477eddf0d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/a62df92dca4f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/845802234c2e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/9240a7671707/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/7f680e6f19e0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/10034128/2993f51d7055/gr9.jpg

相似文献

[1]
Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design.

Ultrason Sonochem. 2023-5

[2]
Green Synthesis of FeO Nanoparticles Stabilized by a Fruit Peel Extract for Hyperthermia and Anticancer Activities.

Int J Nanomedicine. 2021

[3]
Ultrasound assisted chitosan coated iron oxide nanoparticles: Influence of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles.

Ultrason Sonochem. 2022-8

[4]
Simple rapid stabilization method through citric acid modification for magnetite nanoparticles.

Sci Rep. 2020-7-1

[5]
Anticancer efficacy of magnetite nanoparticles synthesized using aqueous extract of brown seaweed Rosenvingea intricata, South Andaman, India.

Sci Rep. 2024-8-31

[6]
Phenyl alanine & Tyrosine Amino acids Coated Magnetic Nanoparticles: Preparation and Toxicity study.

Drug Res (Stuttg). 2019-5

[7]
Design and fabrication of magnetic FeO-QSM nanoparticles loaded with ciprofloxacin as a potential antibacterial agent.

Int J Biol Macromol. 2023-6-30

[8]
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.

J Nanobiotechnology. 2018-10-13

[9]
Sonochemical assisted synthesis and characterization of magnetic PET/FeO, CA, AS nanocomposites: Morphology and physiochemical properties.

Ultrason Sonochem. 2017-8-8

[10]
N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption.

Int J Biol Macromol. 2023-10-1

引用本文的文献

[1]
Fusiform nanoparticle boosts efficient genetic transformation in Sclerotinia sclerotiorum.

J Nanobiotechnology. 2024-8-20

[2]
Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications.

Pharmaceutics. 2024-5-10

[3]
Nanotechnologies and Nanomaterials: Selected Papers from CCMR.

Nanomaterials (Basel). 2023-12-22

[4]
Comparative Analysis of Stable Gold Nanoparticles Synthesized Using Sonochemical and Reduction Methods for Antibacterial Activity.

Molecules. 2023-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索