Suppr超能文献

概率质量排除与互信息的有向分量

Probability Mass Exclusions and the Directed Components of Mutual Information.

作者信息

Finn Conor, Lizier Joseph T

机构信息

Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering & IT, The University of Sydney, NSW 2006, Australia.

CSIRO Data61, Marsfield, NSW 2122, Australia.

出版信息

Entropy (Basel). 2018 Oct 28;20(11):826. doi: 10.3390/e20110826.

Abstract

Information is often described as a reduction of uncertainty associated with a restriction of possible choices. Despite appearing in Hartley's foundational work on information theory, there is a surprising lack of a formal treatment of this interpretation in terms of exclusions. This paper addresses the gap by providing an explicit characterisation of information in terms of probability mass exclusions. It then demonstrates that different exclusions can yield the same amount of information and discusses the insight this provides about how information is shared amongst random variables-lack of progress in this area is a key barrier preventing us from understanding how information is distributed in complex systems. The paper closes by deriving a decomposition of the mutual information which can distinguish between differing exclusions; this provides surprising insight into the nature of directed information.

摘要

信息通常被描述为与可能选择的限制相关的不确定性的减少。尽管这一概念出现在哈特利关于信息论的奠基性著作中,但令人惊讶的是,从排除的角度对这一解释缺乏正式的论述。本文通过提供基于概率质量排除的信息的明确特征来填补这一空白。然后,本文证明了不同的排除可以产生相同数量的信息,并讨论了这一结论对于理解信息如何在随机变量之间共享所提供的见解——该领域缺乏进展是阻碍我们理解信息在复杂系统中如何分布的关键障碍。本文最后推导了互信息的一种分解形式,该形式可以区分不同的排除;这为有向信息的本质提供了惊人的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f7c/7512388/f0c514eab081/entropy-20-00826-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验