Chen Wei, Liao Jujian, Zhu Peidong, Liu Hui, Zhu Zhengjian, Zheng Yu, Liu Jindong
School of Electronic Information and Electrical Engineering, Changsha University Changsha 410022 China
School of Physics and Electronics, Central South University Changsha 410083 China.
RSC Adv. 2024 Aug 19;14(36):26166-26175. doi: 10.1039/d4ra04463k. eCollection 2024 Aug 16.
Promoting the Curie temperature ( ) and tunning the magnetocrystalline anisotropy energy (MAE) have been key issues with two-dimensional (2D) ferromagnetic (FM) materials. Here, the structural and magnetic properties of MnTe/X (X = As, Sb and Bi) heterostructures are investigated through first-principles calculations. We reveal that monolayer MnTe weakly interacts with monolayer As or Sb through van der Waals (vdW) forces, but has strong covalent bonds with monolayer Bi, indicated by Bi-Te bond formation. The coupling of MnTe with these β-phase group-VA semiconductor monolayers substantially modulates MAE, with MnTe/As showing a shift to in-plane easy magnetization, and MnTe/Sb exhibiting a large perpendicular MAE of 4.13 meV per cell. The formation of vdW heterostructures influence on Te spin-orbit coupling matrix elements markedly governs MAE. MnTe/Bi also has an in-plane MAE, contributed by both Te and Bi atoms. Additionally, coupling MnTe with X significantly affects magnetic interactions. It is worth noting that the of MnTe/Sb reaches 233.2 K, significantly larger than that of pure MnTe. A large perpendicular MAE and a heightened makes MnTe/Sb desired candidates for next-generation spintronic applications. Our work provides a way to modulate the magnetic properties of 2D FM materials.
提高居里温度( )和调整磁晶各向异性能(MAE)一直是二维(2D)铁磁(FM)材料的关键问题。在此,通过第一性原理计算研究了MnTe/X(X = As、Sb和Bi)异质结构的结构和磁性。我们发现单层MnTe通过范德华(vdW)力与单层As或Sb弱相互作用,但与单层Bi形成了共价键,这由Bi-Te键的形成表明。MnTe与这些β相VA族半导体单层的耦合显著调制了MAE,MnTe/As表现出向面内易磁化的转变,而MnTe/Sb表现出每个晶胞4.13 meV的大垂直MAE。vdW异质结构的形成对Te自旋轨道耦合矩阵元素的影响显著地控制了MAE。MnTe/Bi也具有面内MAE,由Te和Bi原子共同贡献。此外,将MnTe与X耦合显著影响磁相互作用。值得注意的是,MnTe/Sb的 达到233.2 K,明显高于纯MnTe。大的垂直MAE和升高的 使MnTe/Sb成为下一代自旋电子学应用的理想候选材料。我们的工作提供了一种调节二维铁磁材料磁性的方法。