Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
Nature. 2020 Mar;579(7799):368-374. doi: 10.1038/s41586-020-2098-y. Epub 2020 Mar 11.
Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest. However, most vdWHs reported so far are created by an arduous micromechanical exfoliation and manual restacking process, which-although versatile for proof-of-concept demonstrations and fundamental studies-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe/WSe, NiTe/WSe, CoTe/WSe, NbTe/WSe, VS/WSe, VSe/MoS and VSe/WS. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moiré superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.
二维范德华异质结 (vdWH) 引起了相当大的兴趣。然而,迄今为止报道的大多数 vdWH 都是通过艰苦的微机械剥离和手动堆叠过程创建的,尽管这种方法对于概念验证演示和基础研究非常通用,但显然不适用于实际技术。在这里,我们报告了一种在金属过渡金属二卤化物 (m-TMD) 和半导体 TMD (s-TMD) 之间形成二维 vdWH 阵列的通用合成策略。通过在单层或双层 s-TMD 上选择性地图案化成核位点,我们可以精确控制各种 m-TMD 的成核和生长,这些 m-TMD 具有可设计的周期性排列和可调谐的横向尺寸,在预定的空间位置产生一系列 vdWH 阵列,包括 VSe/WSe、NiTe/WSe、CoTe/WSe、NbTe/WSe、VS/WSe、VSe/MoS 和 VSe/WS。系统的扫描透射电子显微镜研究揭示了具有广泛可调莫尔超晶格的近乎理想的 vdW 界面。由于具有原子级清洁的 vdW 界面,我们进一步表明 m-TMD 可以作为高度可靠的合成 vdW 接触,用于具有优异器件性能和产率的底层 WSe,在双层 WSe 晶体管中实现高达 900 微安培每微米的高导通电流密度。这种对各种二维 vdWH 阵列的通用合成提供了一个多功能的材料平台,用于探索奇异物理,并有望为高性能器件提供可扩展的途径。