文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于单细胞 RNA 测序,GJB2 通过细胞质易位激活糖酵解促进 HCC 进展并产生抑制性肿瘤微环境。

GJB2 Promotes HCC Progression by Activating Glycolysis Through Cytoplasmic Translocation and Generating a Suppressive Tumor Microenvironment Based on Single Cell RNA Sequencing.

机构信息

Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000, China.

Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key laboratory of Hepatobiliary cancers, Nanjing Medical University, Nanjing, 210000, China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(39):e2402115. doi: 10.1002/advs.202402115. Epub 2024 Aug 20.


DOI:10.1002/advs.202402115
PMID:39162005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11497106/
Abstract

Despite substantial breakthroughs in the treatment of hepatocellular carcinoma (HCC) in recent years, many patients are diagnosed in the middle or late stages, denying them the option for surgical excision. Therefore, it is of great importance to find effective therapeutic targets of HCC. In this study, it is found that Gap junction protein beta-2 (GJB2) is highly enriched in malignant cells based on single-cell RNA sequencing and higher expression of GJB2 indicates a worse prognosis. The localization of GJB2 in HCC cancer cells is changed compared with normal liver tissue. In cancer cells, GJB2 tends to be located in the cytoplasm and nucleus, while in normal tissues, GJB2 is mainly located on the cell membrane. GJB2 is related to glycolysis, promoting NF-κB pathway via inducing the ubiquitination degradation of IκBa, and activating HIF-1α/GLUT-1/PD-L1 pathway. In addition, GJB2 knockdown reshapes tumor immune microenvironment and Salvianolic acid B inhibits the activity of GJB2. In conclusion, GJB2 promotes HCC progression by activating glycolysis through cytoplasmic translocation and generating a suppressive tumor microenvironment. Salvianolic acid B inhibits the expression of GJB2 and enhances the sensitivity of anti-PD1 therapy, which may provide insights into the development of novel combination therapeutic strategies for HCC.

摘要

尽管近年来肝细胞癌 (HCC) 的治疗取得了重大突破,但许多患者在中期或晚期被诊断出来,使他们无法选择手术切除。因此,找到 HCC 的有效治疗靶点非常重要。在这项研究中,基于单细胞 RNA 测序发现间隙连接蛋白β-2 (GJB2) 在恶性细胞中高度富集,并且 GJB2 表达水平越高,预后越差。GJB2 在 HCC 癌细胞中的定位与正常肝组织相比发生了变化。在癌细胞中,GJB2 倾向于位于细胞质和细胞核中,而在正常组织中,GJB2 主要位于细胞膜上。GJB2 与糖酵解有关,通过诱导 IκBa 的泛素化降解来促进 NF-κB 通路,并激活 HIF-1α/GLUT-1/PD-L1 通路。此外,GJB2 敲低重塑肿瘤免疫微环境,丹酚酸 B 抑制 GJB2 的活性。总之,GJB2 通过细胞质易位激活糖酵解,产生抑制性肿瘤微环境,促进 HCC 的进展。丹酚酸 B 抑制 GJB2 的表达并增强抗 PD-1 治疗的敏感性,这可能为开发 HCC 的新型联合治疗策略提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/1f1dfd69e5e8/ADVS-11-2402115-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/e42d97ae0be9/ADVS-11-2402115-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/226e7d5a86c7/ADVS-11-2402115-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/f19cbdab5af8/ADVS-11-2402115-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/4839fcb14d78/ADVS-11-2402115-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/06d3e037477d/ADVS-11-2402115-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/7fb1f383f0d6/ADVS-11-2402115-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/e99caa38b74c/ADVS-11-2402115-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/056a980a8b39/ADVS-11-2402115-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/2b59e1357bbc/ADVS-11-2402115-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/1f1dfd69e5e8/ADVS-11-2402115-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/e42d97ae0be9/ADVS-11-2402115-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/226e7d5a86c7/ADVS-11-2402115-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/f19cbdab5af8/ADVS-11-2402115-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/4839fcb14d78/ADVS-11-2402115-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/06d3e037477d/ADVS-11-2402115-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/7fb1f383f0d6/ADVS-11-2402115-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/e99caa38b74c/ADVS-11-2402115-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/056a980a8b39/ADVS-11-2402115-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/2b59e1357bbc/ADVS-11-2402115-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2407/11497106/1f1dfd69e5e8/ADVS-11-2402115-g011.jpg

相似文献

[1]
GJB2 Promotes HCC Progression by Activating Glycolysis Through Cytoplasmic Translocation and Generating a Suppressive Tumor Microenvironment Based on Single Cell RNA Sequencing.

Adv Sci (Weinh). 2024-10

[2]
Downregulation of C1R promotes hepatocellular carcinoma development by activating HIF-1α-regulated glycolysis.

Mol Carcinog. 2024-11

[3]
Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing.

Redox Biol. 2022-10

[4]
UCHL5 promotes hepatocellular carcinoma progression by promoting glycolysis through activating Wnt/β-catenin pathway.

BMC Cancer. 2024-5-21

[5]
Metastasis and basement membrane-related signature enhances hepatocellular carcinoma prognosis and diagnosis by integrating single-cell RNA sequencing analysis and immune microenvironment assessment.

J Transl Med. 2024-7-31

[6]
TGF-β1-Induced SOX18 Elevation Promotes Hepatocellular Carcinoma Progression and Metastasis Through Transcriptionally Upregulating PD-L1 and CXCL12.

Gastroenterology. 2024-7

[7]
PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma.

Signal Transduct Target Ther. 2021-2-26

[8]
LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2.

J Exp Clin Cancer Res. 2021-9-22

[9]
HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment.

J Exp Clin Cancer Res. 2017-4-27

[10]
Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress.

J Exp Clin Cancer Res. 2018-9-4

引用本文的文献

[1]
Phosphorus-32 microspheres: A dual-modality transarterial radioembolization approach for hepatocellular carcinoma therapy and Anti-PD1 immunotherapy potentiation.

Mater Today Bio. 2025-8-16

[2]
Mendelian randomization analysis of inflammatory biomarkers and hepatocellular carcinoma risk: genetic causality and single-cell transcriptomics.

Discov Oncol. 2025-8-7

[3]
Targeting GJB4 to inhibit tumor growth and induce ferroptosis in pancreatic cancer.

Front Oncol. 2025-6-12

[4]
enhances cancer stem cell properties by modulating expression via NF-κB pathway activation in lung adenocarcinoma.

Transl Cancer Res. 2025-5-30

[5]
GJB2 as a novel prognostic biomarker associated with immune infiltration and cuproptosis in ovarian cancer.

Apoptosis. 2025-5-15

[6]
The glycolytic characteristics of hepatocellular carcinoma and its interaction with the microenvironment: a comprehensive omics study.

J Transl Med. 2025-4-10

[7]
Targeting glycolysis in esophageal squamous cell carcinoma: single-cell and multi-omics insights for risk stratification and personalized therapy.

Front Pharmacol. 2025-3-6

[8]
Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment.

Int J Biol Sci. 2025-1-13

本文引用的文献

[1]
Pan-cancer analysis of the prognostic and immunological role of GJB2: a potential target for survival and immunotherapy.

Front Oncol. 2023-6-23

[2]
Macrophages in immunoregulation and therapeutics.

Signal Transduct Target Ther. 2023-5-22

[3]
Intratumoral CD8 T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer.

Cancer Cell. 2023-3-13

[4]
Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers.

Cancer Metastasis Rev. 2023-9

[5]
Microenvironment-driven metabolic adaptations guiding CD8 T cell anti-tumor immunity.

Immunity. 2023-1-10

[6]
Macrophage GSK3β-deficiency inhibits the progression of hepatocellular carcinoma and enhances the sensitivity of anti-PD1 immunotherapy.

J Immunother Cancer. 2022-12

[7]
Bespoke library docking for 5-HT receptor agonists with antidepressant activity.

Nature. 2022-10

[8]
Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing.

Redox Biol. 2022-10

[9]
New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: from mechanisms to clinical trials.

Int J Biol Sci. 2022

[10]
Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis.

J Nutr Biochem. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索