York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
Nucleic Acids Res. 2024 Sep 23;52(17):e84. doi: 10.1093/nar/gkae715.
Nucleic acid electron density interpretation after phasing by molecular replacement or other methods remains a difficult problem for computer programs to deal with. Programs tend to rely on time-consuming and computationally exhaustive searches to recognise characteristic features. We present NucleoFind, a deep-learning-based approach to interpreting and segmenting electron density. Using an electron density map from X-ray crystallography obtained after molecular replacement, the positions of the phosphate group, sugar ring and nitrogenous base group can be predicted with high accuracy. On average, 78% of phosphate atoms, 85% of sugar atoms and 83% of base atoms are positioned in predicted density after giving NucleoFind maps produced following successful molecular replacement. NucleoFind can use the wealth of context these predicted maps provide to build more accurate and complete nucleic acid models automatically.
核酸电子密度的解析,无论是通过分子置换还是其他方法,对于计算机程序来说仍然是一个难题。程序往往依赖于耗时且计算资源密集的搜索来识别特征。我们提出了 NucleoFind,这是一种基于深度学习的方法,用于解释和分割电子密度。使用分子置换后获得的 X 射线晶体学电子密度图,我们可以高精度地预测磷酸基团、糖环和含氮碱基的位置。平均而言,在给出 NucleoFind 分子置换成功后生成的图谱后,78%的磷酸原子、85%的糖原子和 83%的碱基原子都可以定位在预测的密度中。NucleoFind 可以利用这些预测图谱提供的丰富上下文信息,自动构建更准确和完整的核酸模型。