Iton Zachery W B, Irving-Singh Zion, Hwang Son-Jong, Bhattacharya Amit, Shaker Sammy, Das Tridip, Clément Raphaële J, Goddard William A, See Kimberly A
Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
J Am Chem Soc. 2024 Sep 4;146(35):24398-24414. doi: 10.1021/jacs.4c06263. Epub 2024 Aug 20.
Next-generation batteries based on more sustainable working ions could offer improved performance, safety, and capacity over lithium-ion batteries while also decreasing the cost. Development of next-generation battery technology using "beyond-Li" mobile ions, especially multivalent ions, is limited due to a lack of understanding of solid state conduction of these ions. Here, we introduce ligand-coordinated ions in PS-based (M = Mn, Cd) solid host crystals to simultaneously increase the size of the interlayer spacing, through which the ions can migrate, and screen the charge-dense ions. The ligand-assisted conduction mechanism enables ambient temperature superionic conductivity of various next-generation mobile ions in the electronically insulating PS-based solid. Without the coordinating ligands, all of the compounds show little to no ionic conductivity. Pulsed-field gradient nuclear magnetic resonance spectroscopy suggests that the ionic conduction occurs through a hopping mechanism, where the cations are moving between HO molecules, instead of a vehicular mechanism which has been observed in other hydrated layered solids. This modular system not only facilitates tailoring to different potential applications but also enables us to probe the effect of different host structures, mobile ions, and coordinating ligands on the ionic conductivity. This research highlights the influence of cation charge density, diffusion channel size, and effective charge screening on ligand-assisted solid state ionic conductivity. The insights gained can be applied in the design of other ligand-assisted solid state ionic conductors, which will be especially impactful in realizing solid state multivalent ionic conductors. Additionally, the ion-intercalated PS-based frameworks could potentially serve as a universal solid state electrolyte for various next-generation battery chemistries.
基于更具可持续性的工作离子的下一代电池,相比锂离子电池,在性能、安全性和容量方面可能会有所提升,同时还能降低成本。由于对这些离子的固态传导缺乏了解,使用“超越锂”的移动离子,特别是多价离子来开发下一代电池技术受到了限制。在这里,我们在基于PS的(M = Mn、Cd)固体主体晶体中引入配体配位离子,以同时增加离子能够迁移通过的层间距大小,并屏蔽电荷密集的离子。配体辅助传导机制使各种下一代移动离子在电子绝缘的基于PS的固体中实现室温超离子导电性。没有配位配体时,所有化合物的离子导电性都很低或几乎没有。脉冲场梯度核磁共振光谱表明,离子传导是通过跳跃机制发生的,即阳离子在HO分子之间移动,而不是在其他水合层状固体中观察到的运载机制。这种模块化系统不仅便于针对不同的潜在应用进行定制,还使我们能够探究不同主体结构、移动离子和配位配体对离子导电性的影响。这项研究突出了阳离子电荷密度、扩散通道大小和有效电荷筛选对配体辅助固态离子导电性的影响。所获得的见解可应用于设计其他配体辅助固态离子导体,这在实现固态多价离子导体方面将具有特别重要的意义。此外,离子插层的基于PS的框架有可能作为各种下一代电池化学体系的通用固态电解质。