Yu Xin, Ren Wencai
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China.
Nat Commun. 2023 Jul 6;14(1):3998. doi: 10.1038/s41467-023-39725-6.
Ion transport in nanochannels is crucial for applications in life science, filtration, and energy storage. However, multivalent ion transport is more difficult than the monovalent analogues due to the steric effect and stronger interactions with channel walls, and the ion mobility decreases significantly as temperature decreases. Although many kinds of solid ionic conductors (SICs) have been developed, they can attain practically useful conductivities (0.01 S cm) only for monovalent ions above 0 °C. Here, we report a class of versatile superionic conductors, monolayer CdPS nanosheets-based membranes intercalated with diverse cations with a high density up to ∼2 nm. They exhibit unexpectedly similar superhigh ion conductivities for monovalent (K, Na, Li) and multivalent ions (Ca, Mg, Al), ∼0.01 to 0.8 S cm in the temperature range of -30 ‒ 90 °C, which are one to two orders of magnitude higher than those of the corresponding best SICs. We reveal that the high conductivity originates from the concerted movement of high-density cations in the well-ordered nanochannels with high mobility and low energy barrier. Our work opens an avenue for designing superionic conductors that can conduct various cations and provides possibilities for discovering unusual nanofluidic phenomena in nanocapillaries.
纳米通道中的离子传输对于生命科学、过滤和能量存储等应用至关重要。然而,由于空间位阻效应以及与通道壁更强的相互作用,多价离子传输比单价离子更为困难,并且离子迁移率会随着温度降低而显著下降。尽管已经开发出多种固体离子导体(SICs),但它们仅在0°C以上对于单价离子才能达到实际有用的电导率(0.01 S cm)。在此,我们报道了一类通用的超离子导体,即基于单层CdPS纳米片的膜,其插入了密度高达约2 nm的多种阳离子。它们对于单价离子(K、Na、Li)和多价离子(Ca、Mg、Al)表现出出乎意料的相似超高离子电导率,在-30至90°C的温度范围内为~0.01至0.8 S cm,比相应最佳SICs的电导率高1至2个数量级。我们揭示了高电导率源于高密度阳离子在具有高迁移率和低能垒的有序纳米通道中的协同运动。我们的工作为设计能够传导各种阳离子的超离子导体开辟了一条途径,并为在纳米毛细管中发现异常的纳米流体现象提供了可能性。