Suppr超能文献

Physiological characteristics of Streptococcus dysgalactiae and Streptococcus uberis and the effect of the lactoperoxidase complex on their growth in a chemically-defined medium and milk.

作者信息

Mickelson M N, Brown R W

出版信息

J Dairy Sci. 1985 May;68(5):1095-102. doi: 10.3168/jds.S0022-0302(85)80934-6.

Abstract

Aerobic or anaerobic degradation of glucose by Streptococcus dysgalactiae and Streptococcus uberis yielded products qualitatively similar to those observed previously for Streptococcus agalactiae. There were, however, quantitative differences. Though acetoin was formed during aerobic growth of Streptococcus uberis, there was none with Streptococcus dysgalactiae. Differences between Streptococcus dysgalactiae and Streptococcus uberis in their aerobic metabolism of glucose was in lower oxygen consumption (.5 mol/mol of glucose), greater conversion of glucose to lactic acid, and lower molar growth yields with Streptococcus uberis. Cell suspensions of Streptococcus uberis had strong peroxidase activity, and no hydrogen peroxide accumulated during the respiration on glucose. With Streptococcus dysgalactiae, there was more oxygen consumed during growth (1.5 mol/mol of glucose used), greater conversion of glucose to acetic and formic acids and carbon dioxide, and a cell yield of about 6 g of dry cells more per mole of glucose than with Streptococcus uberis. This increase in molar growth yield with Streptococcus dysgalactiae over Streptococcus uberis could be nearly all accounted for by differences in the amount of substrate level adenosine triphosphate generated. Cell suspensions oxidizing glucose accumulated hydrogen peroxide and showed no peroxidase activity. Streptococcus dysgalactiae showed the same growth relationships in three milk media as Streptococcus agalactiae, although growth and acid formation values were much lower. Growth inhibition by the lactoperoxidase complex was reversed with cystine. Acid formation by Streptococcus uberis was decreased by the lactoperoxidase complex and increased by the addition of cystine; however, neither appeared to affect the growth of the organism.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验