Suppr超能文献

预测无规卷曲蛋白质的动态相互作用。

Predicting the Dynamic Interaction of Intrinsically Disordered Proteins.

机构信息

School of Physics, Zhejiang University, Hangzhou 310058, PR China.

Protein Physiology Lab, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET-IQUIBICEN, Buenos Aires C1428EGA, Argentina.

出版信息

J Chem Inf Model. 2024 Sep 9;64(17):6768-6777. doi: 10.1021/acs.jcim.4c00930. Epub 2024 Aug 20.

Abstract

Intrinsically disordered proteins (IDPs) participate in various biological processes. Interactions involving IDPs are usually dynamic and are affected by their inherent conformation fluctuations. Comprehensive characterization of these interactions based on current techniques is challenging. Here, we present GSALIDP, a GraphSAGE-embedded LSTM network, to capture the dynamic nature of IDP-involved interactions and predict their behaviors. This framework models multiple conformations of IDP as a dynamic graph, which can effectively describe the fluctuation of its flexible conformation. The dynamic interaction between IDPs is studied, and the data sets of IDP conformations and their interactions are obtained through atomistic molecular dynamic (MD) simulations. Residues of IDP are encoded through a series of features including their frustration. GSALIDP can effectively predict the interaction sites of IDP and the contact residue pairs between IDPs. Its performance in predicting IDP interactions is on par with or even better than the conventional models in predicting the interaction of structural proteins. To the best of our knowledge, this is the first model to extend the protein interaction prediction to IDP-involved interactions.

摘要

无规蛋白(IDPs)参与各种生物过程。涉及 IDP 的相互作用通常是动态的,并受到其固有构象波动的影响。基于当前技术对这些相互作用进行全面表征具有挑战性。在这里,我们提出了 GSALIDP,这是一个基于图 SAGE 嵌入的 LSTM 网络,用于捕获 IDP 参与的相互作用的动态性质并预测它们的行为。该框架将 IDP 的多种构象建模为一个动态图,这可以有效地描述其柔性构象的波动。研究了 IDP 之间的动态相互作用,并通过原子分子动力学 (MD) 模拟获得了 IDP 构象及其相互作用的数据集。通过一系列特征对 IDP 的残基进行编码,包括它们的挫折感。GSALIDP 可以有效地预测 IDP 的相互作用位点以及 IDP 之间的接触残基对。它在预测 IDP 相互作用方面的性能与预测结构蛋白相互作用的传统模型相当,甚至更好。据我们所知,这是第一个将蛋白质相互作用预测扩展到 IDP 参与相互作用的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验