Li Jiaxin, Xu Chengxin, Xu Zifu, Xu Guoqiang, Yang Shuihua, Liu Kaipeng, Chen Jianfeng, Li Tianlong, Qiu Cheng-Wei
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2408843121. doi: 10.1073/pnas.2408843121. Epub 2024 Aug 20.
The topological physics has sparked intensive investigations into topological lattices in photonic, acoustic, and mechanical systems, powering counterintuitive effects otherwise inaccessible with usual settings. Following the success of these endeavors in classical wave dynamics, there has been a growing interest in establishing their topological counterparts in diffusion. Here, we propose an additional real-space dimension in diffusion, and the system eigenvalues are transformed from "imaginary" to "real." By judiciously tailoring the effective Hamiltonian with coupling networks, localized and delocalized topological modes are realized in heat transfer. Simulations and experiments in active thermal lattices validate the effectiveness of the proposed theoretical strategy. This approach can be applied to establish various topological lattices in diffusion systems, offering insights into engineering topologically protected edge states in dynamic diffusive scenarios.
拓扑物理学引发了对光子、声学和机械系统中拓扑晶格的深入研究,催生了一些在常规条件下无法实现的反直觉效应。继这些在经典波动力学方面的成功尝试之后,人们对在扩散领域建立其拓扑对应物的兴趣与日俱增。在此,我们提出在扩散中增加一个实空间维度,并且系统本征值从“虚数”转变为“实数”。通过利用耦合网络巧妙地调整有效哈密顿量,在热传递中实现了局域化和非局域化的拓扑模式。有源热晶格中的模拟和实验验证了所提出理论策略的有效性。这种方法可应用于在扩散系统中建立各种拓扑晶格,为在动态扩散场景中设计拓扑保护边缘态提供思路。