Suppr超能文献

纯扩散系统中的高阶拓扑体-角态

Higher-Order Topological In-Bulk Corner State in Pure Diffusion Systems.

作者信息

Liu Zhoufei, Cao Pei-Chao, Xu Liujun, Xu Guoqiang, Li Ying, Huang Jiping

机构信息

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China.

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

出版信息

Phys Rev Lett. 2024 Apr 26;132(17):176302. doi: 10.1103/PhysRevLett.132.176302.

Abstract

Compared with conventional topological insulator that carries topological state at its boundaries, the higher-order topological insulator exhibits lower-dimensional gapless boundary states at its corners and hinges. Leveraging the form similarity between Schrödinger equation and diffusion equation, research on higher-order topological insulators has been extended from condensed matter physics to thermal diffusion. Unfortunately, all the corner states of thermal higher-order topological insulator reside within the band gap. Another kind of corner state, which is embedded in the bulk states, has not been realized in pure diffusion systems so far. Here, we construct higher-dimensional Su-Schrieffer-Heeger models based on sphere-rod structure to elucidate these corner states, which we term "in-bulk corner states." Because of the anti-Hermitian properties of diffusive Hamiltonian, we investigate the thermal behavior of these corner states through theoretical calculation, simulation, and experiment. Furthermore, we study the different thermal behaviors of in-bulk corner state and in-gap corner state. Our results would open a different gate for diffusive topological states and provide a distinct application for efficient heat dissipation.

摘要

与在边界处携带拓扑态的传统拓扑绝缘体相比,高阶拓扑绝缘体在其角点和棱边处呈现出低维无隙边界态。利用薛定谔方程和扩散方程之间的形式相似性,高阶拓扑绝缘体的研究已从凝聚态物理扩展到热扩散领域。遗憾的是,热高阶拓扑绝缘体的所有角点态都位于带隙内。另一种嵌入体态中的角点态,目前在纯扩散系统中尚未实现。在此,我们基于球棒结构构建高维Su-Schrieffer-Heeger模型来阐明这些角点态,我们将其称为“体态角点态”。由于扩散哈密顿量的反厄米特性,我们通过理论计算、模拟和实验来研究这些角点态的热行为。此外,我们研究了体态角点态和带隙内角点态的不同热行为。我们的结果将为扩散拓扑态打开一扇不同的大门,并为高效散热提供独特的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验