Suppr超能文献

用于锌离子微型电容器的多孔三维叉指式集流体和混合微阴极的设计

Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors.

作者信息

Fan Yujia, Naresh Nibagani, Zhu Yijia, Wang Mingqing, Boruah Buddha Deka

机构信息

Institute for Materials Discovery, University College London (UCL), London WC1E 7JE, U.K.

出版信息

ACS Nano. 2025 Apr 8;19(13):13314-13324. doi: 10.1021/acsnano.5c00917. Epub 2025 Mar 25.

Abstract

Zinc-ion microcapacitors (ZIMCs) have gained considerable attention for their intrinsic charge storage mechanisms, combining a battery-type anode with a capacitor-type cathode. However, their development is constrained by challenges related to electrode material selection and microscale device design, especially given the limited footprint of such devices. Despite their potential, exploration of smart electrode processing and hybrid materials for on-chip ZIMCs remains limited. In this work, we introduce 3D gold interdigitated electrodes (3D Au IDEs) as highly porous current collectors, loaded with zinc (Zn) as the anode and hybrid activated carbon coated with PEDOT (AC-PEDOT) as the cathode, using an advanced microplotter fabrication technique. Compared with planar Zn//AC ZIMCs, where Zn and AC materials are loaded onto planar Au IDEs, the 3D Au Zn//AC-PEDOT ZIMCs demonstrate significantly enhanced performance. This is attributed to the critical role of IDEs in increasing the charge storage capacity, improving long-term cycling stability, and boosting capacitive-controlled charge storage contributions. The 3D Au Zn//AC-PEDOT ZIMCs achieve an areal capacity of 1.3 μAh/cm, peak areal energy of 1.11 μWh/cm, and peak areal power of 640 μW/cm, surpassing most reported microsupercapacitors. This study highlights how optimized collectors and hybrid electrodes enhance microdevice charge storage while maximizing performance within a constrained footprint.

摘要

锌离子微电容器(ZIMCs)因其固有的电荷存储机制而备受关注,它将电池型阳极与电容器型阴极结合在一起。然而,它们的发展受到与电极材料选择和微尺度器件设计相关的挑战的限制,特别是考虑到此类器件的占地面积有限。尽管它们具有潜力,但对于片上ZIMCs的智能电极加工和混合材料的探索仍然有限。在这项工作中,我们使用先进的微绘图仪制造技术,引入了三维金叉指电极(3D Au IDEs)作为高度多孔的集流体,将锌(Zn)作为阳极,将涂有聚3,4-乙撑二氧噻吩(PEDOT)的混合活性炭作为阴极。与将Zn和AC材料负载到平面金叉指电极上的平面Zn//AC ZIMCs相比,3D Au Zn//AC-PEDOT ZIMCs表现出显著增强的性能。这归因于叉指电极在增加电荷存储容量、提高长期循环稳定性以及增强电容控制的电荷存储贡献方面的关键作用。3D Au Zn//AC-PEDOT ZIMCs实现了1.3 μAh/cm的面积容量、1.11 μWh/cm的峰值面积能量和640 μW/cm的峰值面积功率,超过了大多数已报道的微型超级电容器。这项研究突出了优化的集流体和混合电极如何在受限的占地面积内增强微器件的电荷存储并最大化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8978/11984303/52d86b9199e5/nn5c00917_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验