Ding Jia, Hu Wenbin, Paek Eunsu, Mitlin David
Chemistry and Materials , State University of New York , Binghamton , New York 13902 , United States.
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Material Science and Engineering , Tianjin University , Tianjin 300072 , China.
Chem Rev. 2018 Jul 25;118(14):6457-6498. doi: 10.1021/acs.chemrev.8b00116. Epub 2018 Jun 28.
In this critical Review we focus on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study. It may be argued that HICs began as aqueous systems, based on a Faradaic oxide positive electrode (e.g., CoO, RuO ) and an activated carbon ion-adsorption negative electrode. In these early embodiments HICs were meant to compete directly with electrical double layer capacitors (EDLCs), rather than with the much higher energy secondary batteries. The HIC design then evolved to be based on a wide voltage (∼4.2 V) carbonate-based battery electrolyte, using an insertion titanium oxide compound anode (LiTiO, Li TiO) versus a Li ion adsorption porous carbon cathode. The modern Na and Li architectures contain a diverse range of nanostructured materials in both electrodes, including TiO, LiTiO, LiTiO, NaLiTiO, NaTiO, graphene, hard carbon, soft carbon, graphite, carbon nanosheets, pseudocapacitor T-NbO, VO, MXene, conversion compounds MoS, VN, MnO, and FeO/FeO, cathodes based on NaV(PO), NaTi(PO), sodium super ionic conductor (NASICON), etc. The Ragone chart characteristics of HIC devices critically depend on their anode-cathode architectures. Combining electrodes with the flattest capacity versus voltage characteristics, and the largest total voltage window, yields superior energy. Unfortunately "flat voltage" materials undergo significant volume expansion/contraction during cycling and are frequently lifetime limited. Overall more research on HIC cathodes is needed; apart from high surface area carbon, very few positive electrodes demonstrate the necessary 10 000 or 100 000 plus cycle life. It remains to be determined whether its lithium ion capacitors (LICs) or sodium ion capacitors (NICs) are superior in terms of energy-power and cyclability. We discuss unresolved issues, including poorly understood fast-charge storage mechanisms, prelithiation and presodiation, solid electrolyte interface (SEI) formation, and high-rate metal plating.
在这篇重要综述中,我们聚焦混合离子电容器(HIC)从早期形式到现代形式的演变,重点关注那些需要进一步深入研究的关键科学技术问题。可以说,HIC最初是基于水系体系发展起来的,其正极采用法拉第氧化物(如CoO、RuO),负极采用活性炭离子吸附电极。在这些早期形式中,HIC旨在直接与双电层电容器(EDLC)竞争,而非与能量更高的二次电池竞争。随后,HIC的设计演变为基于宽电压(约4.2V)的碳酸盐基电池电解质,采用插入型钛氧化物化合物阳极(LiTiO、LiTiO)与锂离子吸附多孔碳阴极相对。现代的钠基和锂基结构在两个电极中都包含多种纳米结构材料,包括TiO、LiTiO、LiTiO、NaLiTiO、NaTiO、石墨烯、硬碳、软碳、石墨、碳纳米片、赝电容T-NbO、VO、MXene、转化化合物MoS、VN、MnO以及FeO/FeO,阴极则基于NaV(PO)、NaTi(PO)、钠超离子导体(NASICON)等。HIC器件的拉贡图特性严重依赖于其阳极 - 阴极结构。将具有最平坦的容量与电压特性以及最大总电压窗口的电极组合在一起,可产生更高的能量。不幸的是,“平坦电压”材料在循环过程中会经历显著的体积膨胀/收缩,并且其寿命往往受到限制。总体而言,需要对HIC阴极进行更多研究;除了高表面积碳之外,很少有正极能展现出所需的10000次或100000次以上的循环寿命。锂离子电容器(LIC)和钠离子电容器(NIC)在能量 - 功率和循环性能方面哪个更优仍有待确定。我们讨论了尚未解决的问题,包括对快速充电存储机制、预锂化和预钠化、固体电解质界面(SEI)形成以及高速率金属镀层的理解不足。