Suppr超能文献

核酮糖-1,5-二磷酸羧化酶/加氧酶的进化与起源。

Evolution and origins of rubisco.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Curr Biol. 2024 Aug 19;34(16):R764-R767. doi: 10.1016/j.cub.2024.06.024.

Abstract

Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase) is the most abundant enzyme in the world, constituting up to half of the soluble protein content in plant leaves. Such is its ubiquity that its chemical fingerprint can be detected in the geological record spanning billions of years. Rubisco catalyses the conversion of inorganic CO into organic sugars, which underpin almost all of the biosphere, including our entire food chain. Due to its central role in the global carbon cycle, rubisco has been the subject of intense research for over 50 years. Rubisco is often considered inefficient due to its slow rate of carboxylation compared with other central metabolism enzymes, and its promiscuous oxygenase activity, which competes with the productive carboxylation reaction. It is hoped that engineering improved CO fixation will have significant advantages in agriculture and climate change mitigation. However, rubisco has proven difficult to engineer, with decades of efforts yielding limited results. Recent research has focused on reconstructing the evolutionary trajectory of rubisco to help elucidate its cryptic origins. Such evolutionary studies have led to a better understanding of both the origins of more complex rubisco forms and the broader relationship between rubisco's structure and function.

摘要

核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是世界上含量最丰富的酶,占植物叶片可溶性蛋白含量的一半之多。它无处不在,其化学特征甚至可以在跨越数十亿年的地质记录中被检测到。Rubisco 催化将无机 CO 转化为有机糖,这为包括我们整个食物链在内的几乎所有生物圈提供了基础。由于 Rubisco 在全球碳循环中的核心作用,它已经成为 50 多年来研究的焦点。Rubisco 通常被认为效率低下,因为与其他中心代谢酶相比,其羧化作用的速度较慢,而且其具有混杂的加氧酶活性,与生产性羧化反应竞争。人们希望改进 CO 固定的工程设计将在农业和减缓气候变化方面具有显著优势。然而,Rubisco 的工程设计证明具有挑战性,几十年的努力只取得了有限的成果。最近的研究集中在重建 Rubisco 的进化轨迹上,以帮助阐明其隐藏的起源。此类进化研究使我们对更复杂的 Rubisco 形式的起源以及 Rubisco 的结构和功能之间的更广泛关系有了更好的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验