Wilson Robert H, Alonso Hernan, Whitney Spencer M
Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia.
Sci Rep. 2016 Mar 1;6:22284. doi: 10.1038/srep22284.
In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.
在光合作用中,1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)催化卡尔文循环中通常限速的二氧化碳固定步骤。这使得Rubisco既是碳进入生物圈的守门人,也是功能改进以增强光合作用和植物生长的目标。阻碍Rubisco催化性能的是其高度保守、复杂的催化化学性质。因此,使用冗长的“试错”蛋白质工程方法来增强Rubisco催化作用的传统努力取得的成功有限。在这里,我们展示了高通量定向(实验室)蛋白质进化在改善来自嗜甲烷球菌的非光合Rubisco羧化特性方面的多功能性。通过在模式植物烟草中进行叶绿体转化,我们证实相对于产生野生型嗜甲烷球菌Rubisco的烟草对照,改进形式的嗜甲烷球菌Rubisco提高了光合作用和生长。我们的研究结果表明,古生菌Rubisco的持续定向进化为增强叶片光合作用和植物生长提供了新的潜力。