Suppr超能文献

改造嗜冷嗜盐甲烷球菌的核酮糖-1,5-二磷酸羧化酶以改善光合作用和植物生长。

Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

作者信息

Wilson Robert H, Alonso Hernan, Whitney Spencer M

机构信息

Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia.

出版信息

Sci Rep. 2016 Mar 1;6:22284. doi: 10.1038/srep22284.

Abstract

In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.

摘要

在光合作用中,1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)催化卡尔文循环中通常限速的二氧化碳固定步骤。这使得Rubisco既是碳进入生物圈的守门人,也是功能改进以增强光合作用和植物生长的目标。阻碍Rubisco催化性能的是其高度保守、复杂的催化化学性质。因此,使用冗长的“试错”蛋白质工程方法来增强Rubisco催化作用的传统努力取得的成功有限。在这里,我们展示了高通量定向(实验室)蛋白质进化在改善来自嗜甲烷球菌的非光合Rubisco羧化特性方面的多功能性。通过在模式植物烟草中进行叶绿体转化,我们证实相对于产生野生型嗜甲烷球菌Rubisco的烟草对照,改进形式的嗜甲烷球菌Rubisco提高了光合作用和生长。我们的研究结果表明,古生菌Rubisco的持续定向进化为增强叶片光合作用和植物生长提供了新的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c17b/4772096/036697c90dbf/srep22284-f1.jpg

相似文献

2
Producing fast and active Rubisco in tobacco to enhance photosynthesis.
Plant Cell. 2023 Feb 20;35(2):795-807. doi: 10.1093/plcell/koac348.
3
Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
Biochem Soc Trans. 2021 Nov 1;49(5):2007-2019. doi: 10.1042/BST20201056.
4
An improved screen for Rubisco identifies a protein-protein interface that can enhance CO-fixation kinetics.
J Biol Chem. 2018 Jan 5;293(1):18-27. doi: 10.1074/jbc.M117.810861. Epub 2017 Oct 6.
5
The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25890-25896. doi: 10.1073/pnas.2011641117. Epub 2020 Sep 28.
7
Rubisco Engineering by Plastid Transformation and Protocols for Assessing Expression.
Methods Mol Biol. 2021;2317:195-214. doi: 10.1007/978-1-0716-1472-3_10.
9
Perspectives on improving crop Rubisco by directed evolution.
Semin Cell Dev Biol. 2024 Mar 1;155(Pt A):37-47. doi: 10.1016/j.semcdb.2023.04.003. Epub 2023 Apr 20.

引用本文的文献

2
Directed Evolution of an Ultra-Fast Rubisco from a Semi-Anaerobic Environment Imparts Oxygen Resistance.
bioRxiv. 2025 May 5:2025.02.17.638297. doi: 10.1101/2025.02.17.638297.
3
In vivo directed evolution of an ultrafast Rubisco from a semianaerobic environment imparts oxygen resistance.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2505083122. doi: 10.1073/pnas.2505083122. Epub 2025 Jun 30.
4
Synthetic biology in plants.
Plant Biotechnol (Tokyo). 2024 Sep 25;41(3):173-193. doi: 10.5511/plantbiotechnology.24.0630b.
5
Optimizing the thermostability of triketone dioxygenase for engineering tolerance to mesotrione herbicide in soybean and cotton.
Front Plant Sci. 2025 Feb 4;15:1502454. doi: 10.3389/fpls.2024.1502454. eCollection 2024.
6
A map of the rubisco biochemical landscape.
Nature. 2025 Feb;638(8051):823-828. doi: 10.1038/s41586-024-08455-0. Epub 2025 Jan 22.
7
Synthetic biology and artificial intelligence in crop improvement.
Plant Commun. 2025 Feb 10;6(2):101220. doi: 10.1016/j.xplc.2024.101220. Epub 2024 Dec 12.
8
Engineering Rubisco to enhance CO utilization.
Synth Syst Biotechnol. 2023 Dec 27;9(1):55-68. doi: 10.1016/j.synbio.2023.12.006. eCollection 2024 Mar.
9
Cell-free expression of RuBisCO for ATP production in the synthetic cells.
Synth Biol (Oxf). 2023 Dec 20;8(1):ysad016. doi: 10.1093/synbio/ysad016. eCollection 2023.
10
Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth.
Nat Plants. 2023 Jun;9(6):978-986. doi: 10.1038/s41477-023-01436-7. Epub 2023 Jun 8.

本文引用的文献

1
Photosynthesis: Getting it together for CO2 fixation.
Nat Plants. 2015 Sep 1;1:15130. doi: 10.1038/nplants.2015.130.
2
Role of auxiliary proteins in Rubisco biogenesis and function.
Nat Plants. 2015 Jun 2;1:15065. doi: 10.1038/nplants.2015.65.
3
How mutational epistasis impairs predictability in protein evolution and design.
Protein Sci. 2016 Jul;25(7):1260-72. doi: 10.1002/pro.2876. Epub 2016 Jan 22.
5
Structure and mechanism of the Rubisco-assembly chaperone Raf1.
Nat Struct Mol Biol. 2015 Sep;22(9):720-8. doi: 10.1038/nsmb.3062. Epub 2015 Aug 3.
6
Methods for the directed evolution of proteins.
Nat Rev Genet. 2015 Jul;16(7):379-94. doi: 10.1038/nrg3927. Epub 2015 Jun 9.
7
A pentose bisphosphate pathway for nucleoside degradation in Archaea.
Nat Chem Biol. 2015 May;11(5):355-60. doi: 10.1038/nchembio.1786. Epub 2015 Mar 30.
9
Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3564-9. doi: 10.1073/pnas.1420536112. Epub 2015 Mar 2.
10
Opposing effects of folding and assembly chaperones on evolvability of Rubisco.
Nat Chem Biol. 2015 Feb;11(2):148-55. doi: 10.1038/nchembio.1715. Epub 2015 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验