Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China.
Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France.
Curr Biol. 2024 Sep 23;34(18):4143-4159.e6. doi: 10.1016/j.cub.2024.07.079. Epub 2024 Aug 19.
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
肌肉形态发生是一个多步骤的程序,从成肌细胞融合开始,接着是肌管-肌腱附着和肌节组装,随后是肌节成熟、线粒体扩增和特化。这些步骤的正确时间顺序需要精确控制转录调节剂及其效应物。在肌肉发育过程中,这种调节是如何实现的还不是很清楚。在果蝇的全基因组 RNAi 筛选中,我们鉴定了 BTB-锌指蛋白 Tono(CG32121)作为一种肌肉特异性转录调节剂。tono 突变的飞行肌显示出严重的线粒体和肌节成熟缺陷,导致收缩力失控,在发育过程中导致肌肉破裂和退化。Tono 蛋白在肌节成熟过程中表达,并定位于飞行肌核中的独特凝聚物中。有趣的是,成熟肌节施加的内部压力使肌肉核变形成长形,并改变了 Tono 凝聚物,表明 Tono 感知肌肉细胞的机械状态。事实上,肌肉上的外部机械压力触发了 Tono 利用其 BTB 结构域的快速液-液相分离。因此,我们提出 Tono 感知高机械压力以适应肌肉转录,特别是在肌节成熟阶段。一致地,tono 突变肌肉显示出在转录开关中特定的缺陷,该转录开关抑制早期肌肉分化基因并促进晚期基因。我们假设类似的机械响应调节机制可能控制相关 BTB-锌指蛋白的活性,如果这些蛋白发生突变,可能会导致人类肌肉中产生不受控制的力。