Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
Nat Commun. 2021 Apr 7;12(1):2091. doi: 10.1038/s41467-021-22058-7.
Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.
复杂动物构建专门的肌肉以匹配特定的生物力学和能量需求。因此,肌节和线粒体的组成和结构是肌肉类型特异性的。然而,协调线粒体与肌节发生的机制尚不清楚。在这里,我们使用果蝇肌肉来证明肌纤维和线粒体形态发生密切相关。在飞行肌肉中,肌肉选择因子分裂蛋白指导线粒体插入肌纤维之间,肌纤维反过来通过机械作用将线粒体固定成细长形状。相反,在横纹腿部肌肉中,线粒体网络围绕肌纤维束,仅通过薄的延伸与肌纤维束接触。为了研究导致这些差异的机制,我们操纵了线粒体的动态,发现肌纤维组装过程中线粒体融合的增加可防止线粒体在飞行肌肉中插入。引人注目的是,这导致了横纹肌特异性肌节蛋白的表达。因此,飞行肌肉肌纤维向部分横纹肌结构转化。总之,这些数据表明,分裂蛋白下游的生物力学反馈机制将线粒体与肌节形态发生同步化。