Suppr超能文献

利用机器学习模型优化卵母细胞产量用于剂量和触发决策的多中心前瞻性研究。

Optimizing oocyte yield utilizing a machine learning model for dose and trigger decisions, a multi-center, prospective study.

机构信息

RMA of New York, 635 Madison Avenue, 10th Floor, New York, NY, 10022, USA.

Alife Health, Inc., 3717 Buchanan Street, Suite 400, San Francisco, CA, 94123, USA.

出版信息

Sci Rep. 2024 Aug 20;14(1):18721. doi: 10.1038/s41598-024-69165-1.

Abstract

The objective of this study was to evaluate clinical outcomes for patients undergoing IVF treatment where an artificial intelligence (AI) platform was utilized by clinicians to help determine the optimal starting dose of FSH and timing of trigger injection. This was a prospective clinical trial with historical control arm. Four physicians from two assisted reproductive technology treatment centers in the United States participated in the study. The treatment arm included patients undergoing autologous IVF cycles between December 2022-April 2023 where the physician use AI to help select starting dose of follicle stimulating hormone (FSH) and trigger injection timing (N = 291). The control arm included historical patients treated where the same doctor did not use AI between September 2021 and September 2022. The main outcome measures were total FSH used and average number of mature metaphase II (MII) oocytes. There was a non-significant trend towards improved patient outcomes and a reduction in FSH with physician use of AI. Overall, the average number of MIIs in the treatment vs. control arm was 12.20 vs 11.24 (improvement = 0.96, p = 0.16). The average number of oocytes retrieved in the treatment vs. control arm was 16.01 vs 14.54 (improvement = 1.47, p = 0.08). The average total FSH in the treatment arm was 3671.95 IUs and the average in the control arm was 3846.29 IUs (difference = -174.35 IUs, p = 0.13). These results suggests that AI can safely assist in refining the starting dose of FSH while narrowing down the timing of the trigger injection during ovarian stimulation, benefiting the patient in optimizing the count of MII oocytes retrieved.

摘要

本研究的目的是评估在接受体外受精 (IVF) 治疗的患者中使用人工智能 (AI) 平台的临床结果,该平台帮助临床医生确定促卵泡激素 (FSH) 的起始剂量和触发注射时间。这是一项前瞻性临床试验,具有历史对照组。来自美国两个辅助生殖技术治疗中心的四名医生参与了这项研究。治疗组包括 2022 年 12 月至 2023 年 4 月期间接受自体 IVF 周期的患者,其中医生使用 AI 帮助选择起始剂量的卵泡刺激素 (FSH) 和触发注射时间 (N=291)。对照组包括 2021 年 9 月至 2022 年 9 月期间接受同一医生未使用 AI 治疗的历史患者。主要结局指标是总 FSH 使用量和平均成熟中期 II (MII) 卵母细胞数量。医生使用 AI 具有改善患者结局和降低 FSH 的趋势,但无统计学意义。总体而言,治疗组与对照组的平均 MII 数量分别为 12.20 和 11.24(改善量=0.96,p=0.16)。治疗组与对照组的平均卵母细胞数分别为 16.01 和 14.54(改善量=1.47,p=0.08)。治疗组的平均总 FSH 为 3671.95IU,对照组的平均总 FSH 为 3846.29IU(差值=-174.35IU,p=0.13)。这些结果表明,AI 可以安全地帮助调整 FSH 的起始剂量,同时缩小卵巢刺激期间触发注射的时间,从而优化可获得的 MII 卵母细胞数量,使患者受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/371a/11335759/629f9859f61b/41598_2024_69165_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验