Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany.
Genome Biol Evol. 2024 Sep 3;16(9). doi: 10.1093/gbe/evae183.
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
溶解氧(缺氧)低被认为是全球水生生态系统的主要威胁。因为氧对于动物的能量代谢至关重要,所以了解动物对缺氧耐受的功能和遗传驱动因素对于预测水生缺氧的影响至关重要。在这项研究中,我们研究了参与检测和响应射线鳍鱼类缺氧的关键基因的分子进化:脯氨酰羟化酶结构域(PHD)-低氧诱导因子(HIF)氧感应系统,也称为 EGLN(产卵九)-HIF 氧感应系统。我们在鱼类基因组中搜索了 HIFA 和 EGLN 基因,从这两个基因家族中发现了新的旁系同源物,并分析了正选择下的蛋白质编码位点。使用每个基因的线性判别器总结了这些正选择氨基酸位点的物理化学性质。我们采用进化广义最小二乘法来评估每个 HIFA 和 EGLN 的这些线性判别器与作为相应物种临界氧张力(Pcrit)的缺氧耐受能力之间的关系。我们的结果表明,射线鳍鱼类的 Pcrit 与特定的 HIFA 和 EGLN 基因中正选择位点的物理化学变化相关。对于 HIF2A,两个线性判别器捕获了这些位点的 90%以上的物理化学变化,并解释了 Pcrit 变化的 20%至 39%。因此,鱼类之间的 HIF2A 变异可能有助于它们应对水生缺氧的能力,类似于其在某些陆地脊椎动物谱系中赋予对高海拔缺氧耐受的作用。