Suppr超能文献

并且能够沿着草食性鱼类的后肠降解一系列多糖。

and are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish .

作者信息

Facimoto Cesar T, Clements Kendall D, White W Lindsey, Handley Kim M

机构信息

School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.

Department of Environmental Science, Auckland University of Technology, Auckland, 1010, New Zealand.

出版信息

ISME Commun. 2024 Aug 1;4(1):ycae102. doi: 10.1093/ismeco/ycae102. eCollection 2024 Jan.

Abstract

The gut microbiota of the marine herbivorous fish are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by and . Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer and . Results indicate that utilize substrates in both brown and red algae, whereas other taxa, namely, , , and , utilize mainly brown algae. had the highest CAZyme gene densities overall, and were especially enriched in CAZyme gene clusters ( = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that encompass specialized macroalgae degraders.

摘要

海洋草食性鱼类的肠道微生物群被认为通过对膳食红藻和褐藻进行发酵来供应短链脂肪酸(SCFAs),从而在宿主营养中发挥重要作用。在这里,我们利用来自野生鱼类的645个宏基因组组装基因组(MAGs),确定了不同细菌类群沿肠道降解海藻碳水化合物的能力。大多数细菌(99%)在物种水平上未被分类。肠道群落和与碳水化合物活性酶(CAZyme)相关的转录活性由[具体类别1]和[具体类别2]主导。这两个类别都拥有作用于内部多糖键的CAZyme基因,表明它们在启动聚糖解聚中发挥作用,随后是较罕见的[具体类别3]和[具体类别4]。结果表明,[具体类别1]利用褐藻和红藻中的底物,而其他类群,即[具体类群1]、[具体类群2]、[具体类群3]和[具体类群4],主要利用褐藻。[具体类别1]总体上具有最高的CAZyme基因密度,并且[具体类别1]在CAZyme基因簇中特别富集([具体类别1]为73个,而分布在所有其他类群中的只有62个),这表明其对大型海藻多糖(如藻酸盐、海带多糖和硫酸化多糖)的利用能力增强。MAG相对丰度与编码的CAZyme组成之间的成对相关性提供了潜在种间合作的证据。共丰度的MAG对特定底物表现出互补的降解能力,并且在其获取碳的能力方面具有灵活性(例如富含葡萄糖或半乳糖的聚糖),这可能通过生态位划分促进共存。结果表明,[鱼类名称]肠道中存在微生物协同碳水化合物代谢的潜力,更多种类的类群参与了膳食褐藻与红藻的分解,并且[具体类别1]包含专门的大型海藻降解菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c66/11333855/edae40f7036c/ycae102f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验