Santos Julia C, Enrique-Romero Joan, Lamberts Thanja, Linnartz Harold, Chuang Ko-Ju
Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands.
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
ACS Earth Space Chem. 2024 Jul 25;8(8):1646-1660. doi: 10.1021/acsearthspacechem.4c00150. eCollection 2024 Aug 15.
The chemical network governing interstellar sulfur has been the topic of unrelenting discussion for the past few decades due to the conspicuous discrepancy between its expected and observed abundances in different interstellar environments. More recently, the astronomical detections of CHCHSH and CHCS highlighted the importance of interstellar formation routes for sulfur-bearing organic molecules with two carbon atoms. In this work, we perform a laboratory investigation of the solid-state chemistry resulting from the interaction between CH molecules and SH radicals-both thought to be present in interstellar icy mantles-at 10 K. Reflection absorption infrared spectroscopy and quadrupole mass spectrometry combined with temperature-programmed desorption experiments are employed as analytical techniques. We confirm that SH radicals can kick-start a sulfur reaction network under interstellar cloud conditions and identify at least six sulfurated products: CHCHSH, CHCHSH, HSCHCHSH, HS, and tentatively CHCHS and CHCS. Complementarily, we utilize computational calculations to pinpoint the reaction routes that play a role in the chemical network behind our experimental results. The main sulfur-bearing organic molecule formed under our experimental conditions is CHCHSH, and its formation yield increases with the ratios of H to other reactants. It serves as a sink to the sulfur budget within the network, being formed at the expense of the other unsaturated products. The astrophysical implications of the chemical network proposed here are discussed.
在过去几十年里,由于星际硫在不同星际环境中的预期丰度与观测丰度之间存在明显差异,控制星际硫的化学网络一直是人们持续讨论的话题。最近,对CHCHSH和CHCS的天文探测突出了含两个碳原子的含硫有机分子星际形成途径的重要性。在这项工作中,我们对CH分子与SH自由基(两者都被认为存在于星际冰幔中)在10 K下相互作用产生的固态化学进行了实验室研究。采用反射吸收红外光谱、四极杆质谱以及程序升温脱附实验作为分析技术。我们证实,在星际云条件下,SH自由基可以启动一个硫反应网络,并鉴定出至少六种硫化产物:CHCHSH、CHCHSH、HSCHCHSH、HS,以及初步鉴定的CHCHS和CHCS。作为补充,我们利用计算来确定在我们实验结果背后的化学网络中起作用的反应途径。在我们的实验条件下形成的主要含硫有机分子是CHCHSH,其形成产率随着H与其他反应物的比例增加而增加。它作为网络中硫预算的一个汇,是以牺牲其他不饱和产物为代价形成的。本文讨论了所提出的化学网络的天体物理学意义。