Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Physiol Plant. 2024 Jul-Aug;176(4):e14492. doi: 10.1111/ppl.14492.
Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.
基因组 DNA 甲基化模式在植物和哺乳动物的发育过程中起着至关重要的作用。在这项研究中,我们旨在研究表观遗传机制对大豆幼苗发育和代谢途径的重要影响。我们的分析表明,5-氮杂胞苷处理从浸种后两天(DAI)开始影响胚根发育,同时也影响茎和根的发育。我们检查了与 DNA 甲基化和去甲基化途径相关的关键基因的表达水平,如 DRM2,它编码 RNA 指导的 DNA 甲基化(RdDM)途径,SAM 合酶,负责提供甲基基团,以及 ROS1,一种 DNA 去甲基酶。在处理过的幼苗根中,我们观察到 DRM2 的表达增加和 ROS1 的表达减少。此外,5-氮杂胞苷处理改变了蛋白质的积累,表明表观遗传控制对胁迫反应,同时抑制氮同化、尿素循环和糖酵解相关蛋白。此外,它还影响了各种对幼苗生长至关重要的植物激素和代谢物的水平,如 ABA、IAA、乙烯、多胺(PUT 和 Cad)和游离氨基酸,表明表观遗传变化可能影响大豆对病原体、非生物胁迫和营养吸收的反应。我们的研究结果有助于理解低甲基化如何影响大豆对病原体、非生物胁迫和营养吸收的反应,这些反应对幼苗生长至关重要,表明植物对碳和氮的同化以及激素途径可能受到表观遗传变化的影响。