Suppr超能文献

大豆和种子甲基组之间的相似性以及非 CG 甲基化的丧失并不影响种子发育。

Similarity between soybean and seed methylomes and loss of non-CG methylation does not affect seed development.

机构信息

Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095.

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9730-E9739. doi: 10.1073/pnas.1716758114. Epub 2017 Oct 23.

Abstract

We profiled soybean and methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and We conclude that understanding the mechanisms controlling seed development will require determining how -regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.

摘要

我们对大豆的球形阶段、休眠期和发芽期进行了甲基化组分析,以了解甲基化在种子形成中的作用。在整个种子发育过程中,CHH 甲基化显著增加,主要靶向转座元件(TEs),在有丝分裂后复制过程中得以维持,并在发芽幼苗中急剧下降。相比之下,在同一发育时期,CG-和 CHG-环境甲基化没有显著的全局变化。一个缺乏 CHH 和 CHG 甲基化的 突变体不会影响种子发育、发芽或主要基因表达模式,这表明 CHH 和 CHG 甲基化在种子发育或调控种子基因活性中没有发挥重要作用。相比之下,在 种子中,超过 100 个转座子的转录被去抑制,表明 CHH 环境甲基化的增加可能是一种强化转座子沉默的安全机制。许多编码重要种子蛋白类别的基因,如储存蛋白、油脂生物合成酶和转录因子,位于基因组区域,在种子发育的任何阶段都没有甲基化。这些类别中的许多其他基因具有相似的甲基化模式,无论基因是活跃还是被抑制。我们的结果表明,甲基化在调控对大豆和 种子发育编程很重要的大量基因方面没有发挥重要作用。我们得出结论,理解控制种子发育的机制将需要确定 -调控元件及其同源转录因子如何在遗传调控网络中组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d59/5692608/8e5c8e086b71/pnas.1716758114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验