Suppr超能文献

利用领域自适应和归纳转移学习提高重症监护病房患者预后预测:回顾性观察研究。

Using Domain Adaptation and Inductive Transfer Learning to Improve Patient Outcome Prediction in the Intensive Care Unit: Retrospective Observational Study.

机构信息

Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.

出版信息

J Med Internet Res. 2024 Aug 21;26:e52730. doi: 10.2196/52730.

Abstract

BACKGROUND

Accurate patient outcome prediction in the intensive care unit (ICU) can potentially lead to more effective and efficient patient care. Deep learning models are capable of learning from data to accurately predict patient outcomes, but they typically require large amounts of data and computational resources. Transfer learning (TL) can help in scenarios where data and computational resources are scarce by leveraging pretrained models. While TL has been widely used in medical imaging and natural language processing, it has been rare in electronic health record (EHR) analysis. Furthermore, domain adaptation (DA) has been the most common TL method in general, whereas inductive transfer learning (ITL) has been rare. To the best of our knowledge, DA and ITL have never been studied in-depth in the context of EHR-based ICU patient outcome prediction.

OBJECTIVE

This study investigated DA, as well as rarely researched ITL, in EHR-based ICU patient outcome prediction under simulated, varying levels of data scarcity.

METHODS

Two patient cohorts were used in this study: (1) eCritical, a multicenter ICU data from 55,689 unique admission records from 48,672 unique patients admitted to 15 medical-surgical ICUs in Alberta, Canada, between March 2013 and December 2019, and (2) Medical Information Mart for Intensive Care III, a single-center, publicly available ICU data set from Boston, Massachusetts, acquired between 2001 and 2012 containing 61,532 admission records from 46,476 patients. We compared DA and ITL models with baseline models (without TL) of fully connected neural networks, logistic regression, and lasso regression in the prediction of 30-day mortality, acute kidney injury, ICU length of stay, and hospital length of stay. Random subsets of training data, ranging from 1% to 75%, as well as the full data set, were used to compare the performances of DA and ITL with the baseline models at various levels of data scarcity.

RESULTS

Overall, the ITL models outperformed the baseline models in 55 of 56 comparisons (all P values <.001). The DA models outperformed the baseline models in 45 of 56 comparisons (all P values <.001). ITL resulted in better performance than DA in terms of the number of times and the margin with which it outperformed the baseline models. In 11 of 16 cases (8 of 8 for ITL and 3 of 8 for DA), TL models outperformed baseline models when trained using 1% data subset.

CONCLUSIONS

TL-based ICU patient outcome prediction models are useful in data-scarce scenarios. The results of this study can be used to estimate ICU outcome prediction performance at different levels of data scarcity, with and without TL. The publicly available pretrained models from this study can serve as building blocks in further research for the development and validation of models in other ICU cohorts and outcomes.

摘要

背景

在重症监护病房(ICU)中准确预测患者的结局,可能会带来更有效的治疗。深度学习模型能够从数据中学习,从而准确预测患者的结局,但它们通常需要大量的数据和计算资源。迁移学习(TL)可以通过利用预训练的模型,在数据和计算资源稀缺的情况下提供帮助。虽然 TL 在医学成像和自然语言处理中得到了广泛的应用,但在电子健康记录(EHR)分析中却很少见。此外,在一般情况下,域适应(DA)是最常见的 TL 方法,而归纳迁移学习(ITL)则很少见。据我们所知,DA 和 ITL 在基于 EHR 的 ICU 患者结局预测方面从未进行过深入研究。

目的

本研究在模拟的、数据稀缺程度不同的情况下,研究了基于 EHR 的 ICU 患者结局预测中的 DA 和很少研究的 ITL。

方法

本研究使用了两个患者队列:(1)eCritical,来自加拿大阿尔伯塔省 15 个医疗外科 ICU 的 55689 个独特入院记录,来自 48672 个独特患者,采集时间为 2013 年 3 月至 2019 年 12 月;(2)Medical Information Mart for Intensive Care III,来自马萨诸塞州波士顿的一个单中心、公共可用的 ICU 数据集,采集时间为 2001 年至 2012 年,包含 46476 个患者的 61532 个入院记录。我们比较了基于 DA 和 ITL 的模型与完全连接神经网络、逻辑回归和套索回归的基线模型在预测 30 天死亡率、急性肾损伤、ICU 住院时间和住院时间方面的表现。使用从 1%到 75%的随机训练数据子集以及全数据集,比较了 DA 和 ITL 与基线模型在不同数据稀缺程度下的性能。

结果

总体而言,在 56 次比较中的 55 次(所有 P 值均<.001),ITL 模型优于基线模型。在 56 次比较中的 45 次(所有 P 值均<.001),DA 模型优于基线模型。在多次超越基线模型的次数和幅度方面,ITL 优于 DA。在 16 次中的 11 次(8 次为 ITL,3 次为 DA),当使用 1%的数据子集进行训练时,TL 模型的表现优于基线模型。

结论

基于 TL 的 ICU 患者结局预测模型在数据稀缺的情况下是有用的。本研究的结果可用于在有无 TL 的情况下,估计不同数据稀缺程度下的 ICU 结局预测性能。本研究中公开的预训练模型可作为进一步研究的基础,以开发和验证其他 ICU 队列和结局的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377d/11375375/df9c86227534/jmir_v26i1e52730_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验