Suppr超能文献

采用晶圆级模塑和 3D 打印互连技术的 CMOS 上微流控实验室封装

Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects.

出版信息

IEEE Trans Biomed Circuits Syst. 2024 Aug;18(4):821-833. doi: 10.1109/TBCAS.2024.3419804.

Abstract

Lab-on-a-chip (LoC) technologies continue to promise lower cost and more accessible platforms for performing biomedical testing in low-cost and disposable form factors. Lab-on-CMOS or lab-on-microchip methods extend this paradigm by merging passive LoC systems with active complementary metal-oxide semiconductor (CMOS) integrated circuits (IC) to enable front-end signal conditioning and digitization immediately next to sensors in fluid channels. However, integrating ICs with microfluidics remains a challenge due to size mismatch and geometric constraints, such as non-planar wirebonds or flip-chip approaches in conflict with planar microfluidics. In this work, we present a hybrid packaging solution for IC-enabled microfluidic sensor systems. Our approach uses a combination of wafer-level molding and direct-write 3D printed interconnects, which are compatible with post-fabrication of planar dielectric and microfluidic layers. In addition, high-resolution direct-write printing can be used to rapidly fabricate electrical interconnects at a scale compatible with IC packaging without the need for fixed tooling. Two demonstration sensor-in-package systems with integrated microfluidics are shown, including measurement of electrical impedance and optical scattering to detect and size particles flowing through microfluidic channels over or adjacent to CMOS sensor and read-out ICs. The approach enables fabrication of impedance measurement electrodes less than 1 mm from the readout IC, directly on package surface. As shown, direct fluid contact with the IC surface is prevented by passivation, but long-term this approach can also enable fluid access to IC-integrated electrodes or other top-level IC features, making it broadly enabling for lab-on-CMOS applications.

摘要

芯片实验室(Lab-on-a-chip,LoC)技术继续承诺以更低的成本和更易获取的平台,以低成本和一次性的形式进行生物医学测试。基于互补金属氧化物半导体(Complementary Metal-Oxide Semiconductor,CMOS)的芯片实验室或芯片上实验室方法通过将无源 LoC 系统与有源 CMOS 集成电路(IC)集成,扩展了这一范例,从而能够在紧邻传感器的流体通道中实现前端信号调理和数字化。然而,由于尺寸不匹配和几何约束(例如非平面键合线或与平面微流控冲突的倒装芯片方法),将 IC 与微流控集成仍然是一个挑战。在这项工作中,我们提出了一种用于 IC 增强型微流控传感器系统的混合封装解决方案。我们的方法结合了晶圆级模塑和直接写入 3D 打印互连技术,这两种技术都与平面介电层和微流控层的后制造兼容。此外,高分辨率直接写入打印可用于在与 IC 封装兼容的尺度上快速制造电互连,而无需固定工具。展示了两个具有集成微流控的封装内传感器系统演示,包括通过测量电导率和光散射来检测和测量流过微流道的颗粒,这些微流道位于或靠近 CMOS 传感器和读出 IC。该方法可在距离读出 IC 不到 1 毫米的位置直接在封装表面上制造阻抗测量电极。如所示,通过钝化防止直接与 IC 表面进行流体接触,但从长远来看,这种方法还可以使流体能够接触到 IC 集成电极或其他顶层 IC 特征,从而为基于 CMOS 的实验室应用提供广泛的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验