IHP-Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt/Oder, Germany.
Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany.
Biosensors (Basel). 2019 Jun 5;9(2):77. doi: 10.3390/bios9020077.
Dielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors. The dielectrophoretically immobilization of micron and submicron size particles using interdigitated electrode (IDE) arrays is studied by finite element simulations. The CMOS compatible IDEs have been placed into the silicon microfluidic channel. A rigorous study of the DEP force actuation, the IDE's geometrical structure, and the fluid dynamics are crucial for enabling the complete platform for CMOS integrated microfluidics and detection of micron and submicron-sized particle ranges. The design of the IDEs is performed by robust finite element analyses to avoid time-consuming and costly fabrication processes. To analyze the preliminary microfluidic test vehicle, simulations were first performed with non-biological particles. To produce DEP force, an AC field in the range of 1 to 5 V (peak-to-peak) is applied to the IDE. The impact of the effective external and internal properties, such as actuating DEP frequency and voltage, fluid flow velocity, and IDE's geometrical parameters are investigated. The IDE based system will be used to immobilize and sense particles simultaneously while flowing through the microfluidic channel. The sensed particles will be detected using the capacitive sensing feature of the biosensor. The sensing and detecting of the particles are not in the scope of this paper and will be described in details elsewhere. However, to provide a complete overview of this system, the working principles of the sensor, the readout detection circuit, and the integration process of the silicon microfluidic channel are briefly discussed.
介电泳(DEP)是一种无损且非侵入式的方法,有利于即时医疗诊断测试。这项技术在许多医疗应用中具有显著的相关性,例如在这些应用中,可以进行用于操纵(固定、分离或旋转)和检测生物颗粒(细胞或分子)的微型化平台。DEP 可以使用先进的平面技术来实现,例如互补金属氧化物半导体(CMOS)通过叉指式电容生物传感器。使用叉指电极(IDE)阵列对微米和亚微米尺寸颗粒进行介电泳固定的研究通过有限元模拟进行。CMOS 兼容的 IDE 已放置在硅微流控通道中。对于启用完整的 CMOS 集成微流控和检测微米和亚微米尺寸颗粒范围的 DEP 力致动、IDE 的几何结构和流体动力学进行严格研究至关重要。通过稳健的有限元分析来设计 IDE,以避免耗时且昂贵的制造工艺。为了分析初步的微流控测试车,首先对非生物颗粒进行了模拟。为了产生 DEP 力,将 1 到 5 V(峰峰值)范围内的交流场施加到 IDE 上。研究了有效外部和内部特性(例如致动 DEP 频率和电压、流体流速以及 IDE 的几何参数)的影响。基于 IDE 的系统将用于在微流控通道中流动时同时固定和感测颗粒。将使用生物传感器的电容感测功能检测感测到的颗粒。颗粒的感测和检测不在本文的范围内,将在其他地方详细描述。然而,为了提供对该系统的全面概述,简要讨论了传感器的工作原理、读出检测电路以及硅微流控通道的集成过程。