Suppr超能文献

片上系统考虑用于 CMOS 和流体生物接口的异质集成。

System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

出版信息

IEEE Trans Biomed Circuits Syst. 2016 Dec;10(6):1129-1142. doi: 10.1109/TBCAS.2016.2522402.

Abstract

CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

摘要

CMOS 芯片越来越多地用于直接感测和与流体及生物系统接口。虽然许多生物传感系统已经成功地将 CMOS 芯片用于读出和信号处理与无源感测阵列结合,但在单个芯片上共置感测与有源电路的系统在尺寸和性能方面具有显著优势,但增加了多域设计和异质集成的复杂性。这种新兴的类实验室在 CMOS 系统也带来了独特而令人烦恼的技术挑战,这些挑战源于生物传感器和集成电路 (IC) 的不同要求。对这些系统进行建模不仅必须解决电路设计问题,还必须解决 IC 表面上生物元件的行为以及任何物理结构。现有的工具不支持异质实验室在 CMOS 系统的跨域模拟,因此我们建议采用两步建模方法:使用电路模拟来告知基于物理的模拟,反之亦然。我们回顾了主要的实验室在 CMOS 实现挑战,并讨论了克服这些挑战的实际方法。这些问题包括系统级芯片集成中经典挑战的新版本,例如热效应、布局规划和信号耦合,以及特定于生物和流体领域的新挑战,例如电化学效应、非标准封装、表面处理、消毒、表面结构的微制造和微流控集成。我们在实验室在 CMOS 系统中描述了这些问题,并讨论了已通过实验证明的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验