College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China; Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.
College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China.
Biomater Adv. 2024 Dec;165:213997. doi: 10.1016/j.bioadv.2024.213997. Epub 2024 Aug 21.
Macrophages, highly plastic innate immune cells, critically influence the success of implantable devices by responding to biochemical and physical cues. However, the mechanisms underlying their synergistic regulation of macrophage polarization on implant surfaces remain poorly understood. Therefore, we constructed anti-inflammatory phosphatidylserine (PS) modified polydimethylsiloxane (PDMS) substrates with low, medium, and high modulus (1-100 kPa) to investigate the combined effects and underlying mechanisms of substrate modulus and biochemical signal on macrophage polarization. The introduction of PS on the PDMS surface not only significantly enhanced the polarization of M0 to M2 but also potently suppressed lipopolysaccharide (LPS)-induced M1 activation, with this effect further potentiated by a reduction in substrate modulus. In vivo subcutaneous implantation experiments also corroborated the synergistic effect of PS functionalization and low modulus PDMS in inhibiting M1 activation and promoting M2 polarization. Notably, reduced modulus led to decreased integrin αV/β3 clustering and cytoskeletal protein aggregation, ultimately diminishing YAP activation and nuclear translocation. Concomitantly, this disruption of the Piezo1-cytoskeletal protein positive feedback loop resulted in reduced p65/IκB phosphorylation and inflammation, while concurrently promoting PPARγ expression. Overall, our findings underscore the pivotal role of substrate modulus in modulating PS-mediated biomaterial-cell interactions, synergistically potentiating PS-induced M2 macrophage polarization, thus paving the way for the design of advanced immunomodulatory biomaterials.
巨噬细胞是一种高度可塑性的先天免疫细胞,通过对生化和物理线索的反应,对植入式设备的成功至关重要。然而,它们协同调节植入表面巨噬细胞极化的机制仍知之甚少。因此,我们构建了具有低、中、高模量(1-100kPa)的抗炎磷脂酰丝氨酸(PS)修饰的聚二甲基硅氧烷(PDMS)基底,以研究基底模量和生化信号对巨噬细胞极化的协同作用及其潜在机制。PS 的引入不仅显著增强了 M0 向 M2 的极化,而且强烈抑制了脂多糖(LPS)诱导的 M1 激活,而降低基底模量进一步增强了这种作用。体内皮下植入实验也证实了 PS 功能化和低模量 PDMS 的协同作用,可抑制 M1 激活并促进 M2 极化。值得注意的是,降低的模量导致整合素 αV/β3 聚集和细胞骨架蛋白聚集减少,最终减少 YAP 激活和核易位。同时,这种 Piezo1-细胞骨架蛋白正反馈环的破坏导致 p65/IκB 磷酸化和炎症减少,同时促进 PPARγ 表达。总的来说,我们的发现强调了基底模量在调节 PS 介导的生物材料-细胞相互作用中的关键作用,协同增强 PS 诱导的 M2 巨噬细胞极化,为设计先进的免疫调节生物材料铺平了道路。