Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States.
Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409234. doi: 10.1002/anie.202409234. Epub 2024 Oct 21.
Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O) concentrations. Here, we have reprogrammed cellular hypoxia (low O) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (k/K=830±40 M s) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (k/K=90±9 M s). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1 % O. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.
细胞已经进化出复杂的机制来识别和响应氧气(O)浓度的变化。在这里,我们通过脯氨酰羟化酶 2(PHD2)的气体隧道工程,重新编程了细胞缺氧(低 O)信号,脯氨酰羟化酶 2 是一种非血红素铁依赖性 O 传感器。我们使用计算建模和蛋白质工程技术,确定了一个气体隧道和其中的关键残基,这些残基限制了 O 向 PHD2 催化核心的流动。我们表明,对这些残基进行系统修饰可以打开 PHD2 气体隧道的收缩拓扑结构。使用动力学停流测量法,用 NO 作为二原子气体的替代物,我们证明其与隧道工程突变体的铁中心的结合速率提高了 3.5 倍。我们设计的最有效突变体在羟基化缺氧诱导转录因子 HIF-1α 的肽模拟物方面显示出 9 倍的催化效率增强(k/K=830±40 M s),与 WT PHD2(k/K=90±9 M s)相比。此外,在 HEK-293T 哺乳动物细胞中转染表达设计的 PHD2 突变体的质粒,在 1% O 的缺氧条件下,HIF-1α 和下游缺氧反应转录本显著减少。总的来说,这些研究强调了 PHD2 的激活作为重新编程细胞缺氧反应和 HIF 信号的新途径。