College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Zhejiang Lab, Hangzhou, China.
Nat Comput Sci. 2024 Aug;4(8):600-614. doi: 10.1038/s43588-024-00679-4. Epub 2024 Aug 21.
Large-scale drug discovery and repurposing is challenging. Identifying the mechanism of action (MOA) is crucial, yet current approaches are costly and low-throughput. Here we present an approach for MOA identification by profiling changes in mitochondrial phenotypes. By temporally imaging mitochondrial morphology and membrane potential, we established a pipeline for monitoring time-resolved mitochondrial images, resulting in a dataset comprising 570,096 single-cell images of cells exposed to 1,068 United States Food and Drug Administration-approved drugs. A deep learning model named MitoReID, using a re-identification (ReID) framework and an Inflated 3D ResNet backbone, was developed. It achieved 76.32% Rank-1 and 65.92% mean average precision on the testing set and successfully identified the MOAs for six untrained drugs on the basis of mitochondrial phenotype. Furthermore, MitoReID identified cyclooxygenase-2 inhibition as the MOA of the natural compound epicatechin in tea, which was successfully validated in vitro. Our approach thus provides an automated and cost-effective alternative for target identification that could accelerate large-scale drug discovery and repurposing.
大规模的药物发现和重新利用具有挑战性。确定作用机制(MOA)至关重要,但目前的方法成本高且通量低。在这里,我们提出了一种通过分析线粒体表型变化来识别 MOA 的方法。通过对线粒体形态和膜电位进行时间成像,我们建立了一个监测时分辨离线粒体图像的流水线,得到了一个包含 570,096 个暴露于 1,068 种美国食品和药物管理局批准药物的细胞的单细胞图像数据集。我们开发了一个名为 MitoReID 的深度学习模型,它使用重新识别(ReID)框架和 Inflated 3D ResNet 主干。在测试集上,它实现了 76.32%的 Rank-1 和 65.92%的平均精度,并且能够根据线粒体表型成功识别六种未经训练的药物的 MOA。此外,MitoReID 鉴定出环氧化酶-2 抑制是茶中天然化合物表儿茶素的 MOA,这在体外得到了成功验证。因此,我们的方法为目标识别提供了一种自动化且具有成本效益的替代方案,这可能会加速大规模的药物发现和重新利用。