Suppr超能文献

在深度学习应用中使用Swin UNETR架构对脑磁共振成像扫描进行广泛的多标签梗死分类。

Extensive Multilabel Classification of Brain MRI Scans for Infarcts Using the Swin UNETR Architecture in Deep Learning Applications.

作者信息

Oh Jaeho, An Hyunchul

机构信息

Department of Physical Medicine and Rehabilitation, Seoul Daehyo Rehabilitation Hospital, Yangju, Korea.

Department of Emergency Medicine, Pohang SeMyeong Christianity Hospital, Pohang, Korea.

出版信息

Ann Rehabil Med. 2024 Aug;48(4):271-280. doi: 10.5535/arm.230029. Epub 2024 Aug 22.

Abstract

OBJECTIVE

To distinguish infarct location and type with the utmost precision using the advantages of the Swin UNEt TRansformers (Swin UNETR) architecture.

METHODS

The research employed a two-phase training approach. In the first phase, the Swin UNETR model was trained using the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2022 dataset, which included cases of acute and subacute infarcts. The second phase involved training with data from 309 patients. The 110 categories result from classifying infarcts based on 22 specific brain regions. Each region is divided into right and left sides, and each side includes four types of infarcts (acute, acute lacunar, subacute, subacute lacunar). The unique architecture of Swin UNETR, integrating elements of both the transformer and u-net designs with a hierarchical transformer computed with shifted windows, played a crucial role in the study.

RESULTS

During Swin UNETR training with the ISLES 2022 dataset, batch loss decreased to 0.8885±0.1897, with training and validation dice scores reaching 0.4224±0.0710 and 0.4827±0.0607, respectively. The optimal model weight had a validation dice score of 0.5747. In the patient data model, batch loss decreased to 0.0565±0.0427, with final training and validation accuracies of 0.9842±0.0005 and 0.9837±0.0010.

CONCLUSION

The results of this study surpass the accuracy of similar studies, but they involve the issue of overfitting, highlighting the need for future efforts to improve generalizability. Such detailed classifications could significantly aid physicians in diagnosing infarcts in clinical settings.

摘要

目的

利用Swin UNEt Transformer(Swin UNETR)架构的优势,尽可能精确地区分梗死部位和类型。

方法

本研究采用两阶段训练方法。在第一阶段,使用缺血性脑卒中病变分割挑战赛(ISLES)2022数据集对Swin UNETR模型进行训练,该数据集包括急性和亚急性梗死病例。第二阶段使用309例患者的数据进行训练。110个类别是根据22个特定脑区对梗死进行分类得出的。每个区域分为左右两侧,每侧包括四种类型的梗死(急性、急性腔隙性、亚急性、亚急性腔隙性)。Swin UNETR独特的架构,将Transformer和U-net设计的元素与通过移动窗口计算的分层Transformer相结合,在本研究中发挥了关键作用。

结果

在使用ISLES 2022数据集对Swin UNETR进行训练时,批次损失降至0.8885±0.1897,训练和验证骰子系数分别达到0.4224±0.0710和0.4827±0.0607。最优模型权重的验证骰子系数为0.5747。在患者数据模型中,批次损失降至0.0565±0.0427,最终训练和验证准确率分别为0.9842±0.0005和0.9837±0.0010。

结论

本研究结果超过了类似研究的准确性,但存在过拟合问题,突出了未来提高泛化能力的必要性。这种详细的分类可以显著帮助医生在临床环境中诊断梗死。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a713/11372279/8fb11d042fab/arm-230029f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验