Suppr超能文献

自动化计算机辅助诊断在卒中影像中的准确性:对当前证据的批判性评估。

Accuracy of Automated Computer-Aided Diagnosis for Stroke Imaging: A Critical Evaluation of Current Evidence.

机构信息

Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Little France, United Kingdom (J.M.W., G.M., W.L., A.F.).

Institute of Diagnostic and Interventional Neuroradiology, Universitätsklinikum Carl Gustav Carus, Dresden, Germany (R.v.K.).

出版信息

Stroke. 2022 Jul;53(7):2393-2403. doi: 10.1161/STROKEAHA.121.036204. Epub 2022 Apr 20.

Abstract

There is increasing interest in computer applications, using artificial intelligence methodologies, to perform health care tasks previously performed by humans, particularly in medical imaging for diagnosis. In stroke, there are now commercial artificial intelligence software for use with computed tomography or MR imaging to identify acute ischemic brain tissue pathology, arterial obstruction on computed tomography angiography or as hyperattenuated arteries on computed tomography, brain hemorrhage, or size of perfusion defects. A rapid, accurate diagnosis may aid treatment decisions for individual patients and could improve outcome if it leads to effective and safe treatment; or conversely, to disaster if a delayed or incorrect diagnosis results in inappropriate treatment. Despite this potential clinical impact, diagnostic tools including artificial intelligence methods are not subjected to the same clinical evaluation standards as are mandatory for drugs. Here, we provide an evidence-based review of the pros and cons of commercially available automated methods for medical imaging diagnosis, including those based on artificial intelligence, to diagnose acute brain pathology on computed tomography or magnetic resonance imaging in patients with stroke.

摘要

人们越来越感兴趣的是使用人工智能方法的计算机应用程序,以执行以前由人类执行的医疗保健任务,特别是在医学成像诊断方面。在中风中,现在已经有了用于计算机断层扫描或磁共振成像的商业人工智能软件,用于识别急性缺血性脑组织病理学、计算机断层血管造影上的动脉阻塞或计算机断层上的高信号动脉、脑出血或灌注缺损的大小。快速、准确的诊断可能有助于为个别患者做出治疗决策,如果它能导致有效和安全的治疗,可能会改善结果;否则,如果诊断延迟或不正确导致治疗不当,可能会导致灾难。尽管有这种潜在的临床影响,但诊断工具,包括人工智能方法,并没有像药物那样受到同样的临床评估标准的约束。在这里,我们提供了对商业上可用于诊断中风患者计算机断层扫描或磁共振成像上急性脑病理的自动方法(包括基于人工智能的方法)的优缺点的循证综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验