Batman Training and Research Hospital, Department of Radiology, 72070 Batman, Turkey.
Hatay Training and Research Hospital, Department of Pediatric Radiology, 31001 Hatay, Turkey.
Eur J Radiol. 2021 Dec;145:110050. doi: 10.1016/j.ejrad.2021.110050. Epub 2021 Nov 22.
Rapid detection and vascular territorial classification of stroke enable the determination of the most appropriate treatment. In this study, we aimed to investigate the performance of convolutional neural network (CNN) models in the detection and vascular territorial classification of stroke on diffusion-weighted images (DWI).
DWI of 421 cases (271 acute ischemic stroke patients and 150 cases without any ischemia findings on DWI) obtained between January 2017 to April 2020 were reviewed. We created two custom datasets. A stroke detection dataset was created with 1800 slices (900 S and 900 normal) consisting of 1400 for training, 200 for validation, 200 for test. A vascular territorial type dataset was created with 1717 slices (883 middle cerebral artery stroke, 416 posterior circulatory stroke, and 418 watershed stroke) consisting of 1117 slices for training, 300 for validation, 300 for test. A transfer learning approach based on MobileNetV2 and EfficientNet-B0 CNN architecture was used. The performance of the models was evaluated.
Modified MobileNetV2 and EfficientNet-B0 models achieved 96% (κ: 0.92) and 93% (κ: 0.86) accuracy in stroke detection, respectively. In vascular territorial classification of stroke as middle cerebral artery, posterior circulation, or watershed infarction, an accuracy of 93% (κ: 0.895) was achieved with modified MobileNetV2 model and 87% (κ: 0.805) with modified EfficientNet-B0 CNN model.
Transfer learning approach with custom top CNN models achieve sufficiently high performance for both the detection of ischemic stroke and the classification of its vascular territorial type on DWI.
快速检测和血管区域分类有助于确定最合适的治疗方法。本研究旨在探讨卷积神经网络(CNN)模型在弥散加权成像(DWI)上检测和血管区域分类中风中的性能。
回顾了 2017 年 1 月至 2020 年 4 月期间获得的 421 例病例(271 例急性缺血性脑卒中患者和 150 例 DWI 无任何缺血发现)的 DWI。我们创建了两个自定义数据集。一个卒中检测数据集由 1800 个切片(900 个 S 切片和 900 个正常切片)组成,包括 1400 个用于训练,200 个用于验证,200 个用于测试。另一个血管区域类型数据集由 1717 个切片(883 例大脑中动脉卒中,416 例后循环卒中,418 例分水岭卒中)组成,包括 1117 个用于训练,300 个用于验证,300 个用于测试。使用基于 MobileNetV2 和 EfficientNet-B0 CNN 架构的迁移学习方法。评估了模型的性能。
修改后的 MobileNetV2 和 EfficientNet-B0 模型在卒中检测中分别达到 96%(κ:0.92)和 93%(κ:0.86)的准确性。在卒中的血管区域分类为大脑中动脉、后循环或分水岭梗死中,修改后的 MobileNetV2 模型的准确率为 93%(κ:0.895),修改后的 EfficientNet-B0 CNN 模型的准确率为 87%(κ:0.805)。
使用定制的顶级 CNN 模型的迁移学习方法在 DWI 上对缺血性卒中和其血管区域类型的检测具有足够高的性能。