Suppr超能文献

对比金属(Rh)和碳化物(二维碳化钼MXene)表面在烯烃氢化反应中的表现,有助于深入了解成对氢加成的起源。

Contrasting Metallic (Rh) and Carbidic (2D-MoC MXene) Surfaces in Olefin Hydrogenation Provides Insights on the Origin of the Pairwise Hydrogen Addition.

作者信息

Meng Ling, Pokochueva Ekaterina V, Chen Zixuan, Fedorov Alexey, Viñes Francesc, Illas Francesc, Koptyug Igor V

机构信息

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.

International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian Federation.

出版信息

ACS Catal. 2024 Aug 6;14(16):12500-12511. doi: 10.1021/acscatal.4c02534. eCollection 2024 Aug 16.

Abstract

Kinetic studies are vital for gathering mechanistic insights into heterogeneously catalyzed hydrogenation of unsaturated organic compounds (olefins), where the Horiuti-Polanyi mechanism is ubiquitous on metal catalysts. While this mechanism envisions nonpairwise H addition due to the rapid scrambling of surface hydride (H*) species, a pairwise H addition is experimentally encountered, rationalized here based on density functional theory (DFT) simulations for the ethene (CH) hydrogenation catalyzed by two-dimensional (2D) MXene MoC(0001) surface and compared to Rh(111) surface. Results show that ethyl (CH*) hydrogenation is the rate-determining step (RDS) on MoC(0001), yet CH* formation is the RDS on Rh(111), which features a higher reaction rate and contribution from pairwise H addition compared to 2D-MoC(0001). This qualitatively agrees with the experimental results for propene hydrogenation with parahydrogen over 2D-MoC MXene and Rh/TiO. However, DFT results imply that pairwise selectivity should be negligible owing to the facile H* diffusion on both surfaces, not affected by H* nor CH* coverages. DFT results also rule out the Eley-Rideal mechanism appreciably contributing to pairwise addition. The measurable contribution of the pairwise hydrogenation pathway operating concurrently with the dominant nonpairwise one is proposed to be due to the dynamic site blocking at higher adsorbate coverages or another mechanism that would drastically limit the diffusion of H* adatoms.

摘要

动力学研究对于深入了解不饱和有机化合物(烯烃)的多相催化氢化机理至关重要,在金属催化剂上,堀内-波兰尼机理普遍存在。虽然该机理设想由于表面氢化物(H*)物种的快速重排而导致非成对氢加成,但实验中却遇到了成对氢加成,本文基于密度泛函理论(DFT)模拟对二维(2D)MXene MoC(0001)表面催化乙烯(CH)氢化进行了合理化分析,并与Rh(111)表面进行了比较。结果表明,乙基(CH*)氢化是MoC(0001)上的速率决定步骤(RDS),而CH的形成是Rh(111)上的RDS,与二维MoC(0001)相比,Rh(111)具有更高的反应速率和成对氢加成的贡献。这在定性上与二维MoC MXene和Rh/TiO上用仲氢进行丙烯氢化的实验结果一致。然而,DFT结果表明,由于H在两个表面上的扩散都很容易,成对选择性应该可以忽略不计,不受H或CH覆盖度的影响。DFT结果也排除了埃里-里德机理对成对加成有明显贡献的可能性。与占主导地位的非成对途径同时运行的成对氢化途径的可测量贡献被认为是由于在较高吸附质覆盖度下的动态位点阻塞或另一种会极大限制H*吸附原子扩散的机理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56d/11334177/f1efafb25732/cs4c02534_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验