Meng Ling, Pokochueva Ekaterina V, Chen Zixuan, Fedorov Alexey, Viñes Francesc, Illas Francesc, Koptyug Igor V
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian Federation.
ACS Catal. 2024 Aug 6;14(16):12500-12511. doi: 10.1021/acscatal.4c02534. eCollection 2024 Aug 16.
Kinetic studies are vital for gathering mechanistic insights into heterogeneously catalyzed hydrogenation of unsaturated organic compounds (olefins), where the Horiuti-Polanyi mechanism is ubiquitous on metal catalysts. While this mechanism envisions nonpairwise H addition due to the rapid scrambling of surface hydride (H*) species, a pairwise H addition is experimentally encountered, rationalized here based on density functional theory (DFT) simulations for the ethene (CH) hydrogenation catalyzed by two-dimensional (2D) MXene MoC(0001) surface and compared to Rh(111) surface. Results show that ethyl (CH*) hydrogenation is the rate-determining step (RDS) on MoC(0001), yet CH* formation is the RDS on Rh(111), which features a higher reaction rate and contribution from pairwise H addition compared to 2D-MoC(0001). This qualitatively agrees with the experimental results for propene hydrogenation with parahydrogen over 2D-MoC MXene and Rh/TiO. However, DFT results imply that pairwise selectivity should be negligible owing to the facile H* diffusion on both surfaces, not affected by H* nor CH* coverages. DFT results also rule out the Eley-Rideal mechanism appreciably contributing to pairwise addition. The measurable contribution of the pairwise hydrogenation pathway operating concurrently with the dominant nonpairwise one is proposed to be due to the dynamic site blocking at higher adsorbate coverages or another mechanism that would drastically limit the diffusion of H* adatoms.
动力学研究对于深入了解不饱和有机化合物(烯烃)的多相催化氢化机理至关重要,在金属催化剂上,堀内-波兰尼机理普遍存在。虽然该机理设想由于表面氢化物(H*)物种的快速重排而导致非成对氢加成,但实验中却遇到了成对氢加成,本文基于密度泛函理论(DFT)模拟对二维(2D)MXene MoC(0001)表面催化乙烯(CH)氢化进行了合理化分析,并与Rh(111)表面进行了比较。结果表明,乙基(CH*)氢化是MoC(0001)上的速率决定步骤(RDS),而CH的形成是Rh(111)上的RDS,与二维MoC(0001)相比,Rh(111)具有更高的反应速率和成对氢加成的贡献。这在定性上与二维MoC MXene和Rh/TiO上用仲氢进行丙烯氢化的实验结果一致。然而,DFT结果表明,由于H在两个表面上的扩散都很容易,成对选择性应该可以忽略不计,不受H或CH覆盖度的影响。DFT结果也排除了埃里-里德机理对成对加成有明显贡献的可能性。与占主导地位的非成对途径同时运行的成对氢化途径的可测量贡献被认为是由于在较高吸附质覆盖度下的动态位点阻塞或另一种会极大限制H*吸附原子扩散的机理。