Lawrence Neil D, Montgomery Jessica
Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
R Soc Open Sci. 2024 Aug 21;11(8):231130. doi: 10.1098/rsos.231130. eCollection 2024 Aug.
Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.
将人工智能(AI)作为科学发现催化剂的期望日益增长。在蛋白质折叠等领域部署AI所取得的引人注目的成功,凸显了AI在开启科学知识新前沿方面的潜力。然而,从AI创新到在研究中部署的路径并非线性。那些试图通过应用AI推动新一轮科学进步的人需要一个能够促进AI在各学科中应用的传播引擎。以往技术变革浪潮的经验、在现实环境中部署AI的经历以及AI促进科学社区的新兴研究议程,都为加速AI应用提出了一个框架。这个框架需要采取行动,在各学科之间建立思想供应链;通过开放研究快速转移技术能力;创建赋能研究人员的AI工具;并实施有效的数据管理。这些干预措施共同作用,可以营造一个开放数据科学的环境,在整个科学领域实现AI的益处。